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Chapter 1

Introduction

TileLink is a chip-scale interconnect standard providing multiple masters with coherent memory-
mapped access to memory and other slave devices. TileLink is designed for use in a System-
on-Chip (SoC) to connect general-purpose multiprocessors, co-processors, accelerators, DMA
engines, and simple or complex devices, using a fast scalable interconnect providing both low-
latency and high-throughput transfers. TileLink:

• is a free and open standard for tightly coupled, low-latency SoC buses
• was designed for RISC-V but supports other ISAs
• provides a physically addressed, shared-memory system
• can be implemented over scalable, hierarchically composable, point-to-point networks
• provides coherent access for an arbitrary mix of caching or non-caching masters
• can scale down to simple slave devices or scale up to high-throughput slaves

Some of the important features of TileLink include:

• cache-coherent shared memory, supporting a MOESI-equivalent protocol
• verifiable deadlock freedom for any conforming SoC
• out-of-order completion to improve throughput for concurrent operations
• decoupled interfaces, easing register-stage insertion
• stateless bus-width adaptation and burst fragmentation
• power-aware signal encoding

1
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TL-UL TL-UH TL-C
Read/Write operations y y y
Multibeat messages . y y
Atomic operations . y y
Hint operations . y y
Cache block transfers . . y
Channels B+C+E . . y

Table 1.1: TileLink conformance levels

Protocol Conformance Levels
A TileLink network may support a mix of communicating agents, each supporting different subsets
of the protocol. The TileLink specification includes three conformance levels for attached agents,
which indicates which subset of the protocol they must support as shown in Table 1.1. The simplest
is TileLink Uncached Lightweight (TL-UL), which supports only simple memory read and write
(Get/Put) operations of single words. The next most complex is TileLink Uncached Heavyweight
(TL-UH), which adds various hints, atomic operations, and burst accesses but without support for
coherent caches. Finally, TileLink Cached (TL-C) is the complete protocol, which supports use of
coherent caches.

When a TL-C processor agent communicates with a TL-UL device agent, either the processor
agent should refrain from using the more advanced features or there must be a TL-C-to-TL-UL
adapter in the network between the two. Agents could support other combinations of features but
only the three listed conformance levels are covered by this specification.

Document Overview
The remainder of this specification is broken up into the following sections:

• Chapter 2 gives an overview of the TileLink architecture and its common abstractions.

• Chapter 3 defines the specific signals required by each TileLink channel.

• Chapter 4 defines how those signals are use to exchange TileLink messages.

• Chapter 5 gives an overview of the operations available to TileLink agents, and provides
guidance on their ordering, use of address spaces, and transaction identifiers.

• Chapter 6 details the messages used to perform basic get/put operations on TileLink.

• Chapter 7 extends TileLink with burst transfers, atomic operations, and hints.

• Chapter 8 outlines how cached data blocks are managed in the complete TileLink protocol.



Chapter 2

Architecture

The TileLink protocol is defined in terms of a graph of connected agents that send and receive
messages over point-to-point channels within a link to perform operations on a shared address
space.

operation: A change to an address range’s data values, permissions or location in the memory
hierarchy.

agent: An active participant in the protocol that sends and receives messages in order to com-
plete operations.

channel: A one-way communication connection between a master interface and a slave interface
carrying messages of homogeneous priority.

message: A set of control and data values sent over a particular channel.

link: The set of channels required to complete operations between two agents.

3
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ModuleModule
 Agent Agent    

Master 
Interface

Slave
Interface

Link

Request Message

Response Message

Figure 2.1: Overview of the most basic TileLink network operation. Two modules are connected
by a link, with one module containing an agent with a master interface and the other module
containing an agent with a slave interface. The agent with a master interface sends a request to
an agent with a slave interface. The agent with the slave interface communicates with backing
memory if required. Having obtained the required data or permissions, the slave responds to the
original requestor.

Network Topology
Pairs of agents are connected by links. One end of each link connects to a master interface in one
agent, and the other end connects to a slave interface in the other agent. The agent with the master
interface can request the agent with the slave interface to perform memory operations, or request
permission to transfer and cache copies of data. The agent with the slave interface manages
permissions and access to a range of addresses, wherein it performs memory operations on
behalf of requests arriving on the master interface.

Figure 2.1 shows a TileLink network consisting of a single link between a master interface and a
slave interface, with two channels. To perform an operation on shared memory, the master sends
a request message on the request channel to the slave and awaits an acknowledgement message
on the response channel.

TileLink supports a wide variety of network topologies. Specifically, any topology that can be
described as a Directed Acyclic Graph (DAG) is a legal topology, where agents are the vertices
and links are the edges, with edges directed from master interfaces to slave interfaces. Figure 2.2
illustrates an example of such a topology, wherein two of the modules (the crossbar and the cache)
have agents that have a master interface on their right-side and a slave interface on their left-side.

It is important to note that a single hardware module can contain multiple independent TileLink
agents. An example is shown in Figure 2.3, where the crossbar has one agent that routes data
between links and a second agent that allows configuration state to be accessed. References to
DAG topology in this specification refer to the graph of agents, not the hierarchy of modules.
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Figure 2.2: Example of a more complicated TileLink network topology (DAG), in which two modules
contain an agent that has both a master interface and a slave interface.
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Figure 2.3: Example of a more complicated crossbar module that contains two agents. One agent
has multiple interfaces and is used to route data in normal operation, while the other agent has a
single slave interface to access configuration data for the crossbar.
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ModuleModule

    Agent Agent    

Master 
Interface

Slave
Interface

Link

Channel A

Channel D

Channel C

Channel E

Channel B

Figure 2.4: The five channels that comprise a TileLink link between any pair of agents.

Channel Priorities
Within each network link, the TileLink protocol defines five logically independent channels over
which messages can be sent by agents. To avoid deadlock, TileLink specifies a priority amongst
the channels’ messages that must be strictly enforced. Most channels contain both transaction
control signals as well as actual copies of data. Channels are directional, in that each passes
messages either from master to slave interface or from slave to master interface. Figure 2.4
illustrates the directionality of the five channels.

The two basic channels required to perform memory access operations are:

Channel A. Transmits a request that an operation be performed on a specified address range,
accessing or caching the data.

Channel D. Transmits a data response or acknowledgement message to the original requestor.

The highest protocol conformance level (TL-C) adds three additional channels that provide the
capability to manage permissions on cached blocks of data:

Channel B. Transmits a request that an operation be performed at an address cached by a master
agent, accessing or writing back that cached data.

Channel C. Transmits a data or acknowledgment message in response to a Channel B request.

Channel E. Transmits a final acknowledgment of a cache block transfer from the original re-
questor, used for serialization.

The prioritization of messages across channels is A ¡¡ B ¡¡ C ¡¡ D ¡¡ E, in order of increasing
priority. Priorities ensure that messages flowing through the TileLink network never enter a routing
or hold-and-wait loop. In other words, the message flow through all channels between all agents
remains a DAG. This is a necessary property for TileLink to remain deadlock free.
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Address Space Properties
Properties limit what messages are allowed to be injected into a TileLink network, based on the
range of addresses that the operation is targeting. Properties that might be ascribed to an address
space include its: TileLink conformance level, memory consistency model, cacheability, FIFO
ordering requirements, executeability, privelege level, and any Quality-of-Service guarantees.

Relying on properties, TileLink separates the concerns of determining what operations are possi-
ble on a particular address from the contents of the messages themselves. By front-loading the
effort of determining whether a operation is legal onto the agent sending the initiatory request
message, TileLink is able to eschew a variety of signals from its channel contents.

Specific mechanisms for describing which address ranges have which properties and how those
properties in turn govern message injection are beyond the scope of this document.
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Chapter 3

Signal Descriptions

This chapter tabulates all signals used by TileLink’s five channels, which are summarized in Ta-
ble 3.1. When combined with each channel’s direction, the signal type in Table 3.2 determines
signal direction. The widths of these signals are parameterized by values described in Table 3.3.

Channel Direction Purpose
A Master to Slave Request messages sent to an address
B Slave to Master Request messages sent to a cached block (TL-C only)
C Master to Slave Response messages from a cached block (TL-C only)
D Slave to Master Response messages from an address
E Master to Slave Final handshake for cache block transfer (TL-C only)

Table 3.1: Overview of TileLink channels.

Type Direction Description
X Input Clock or reset signal, an input to both TileLink agents
C Channel direction Control signals, unchanging between beats of a burst
D Channel direction Data signals, changing on every beat
V Channel direction Valid signal, indicates C/D/F contain valid data
R Reverse direction Ready signal, indicating that V was accepted

Table 3.2: TileLink signal types. Channel direction is as indicated in Table 3.1.

Parameter Description
w Width of the data bus in bytes. Must be a power of two.
a Width of each address field in bits.
z Width of each size field in bits.
o Number of bits needed to disambiguate per-link master sources.
i Number of bits needed to disambiguate per-link slave sinks.

Table 3.3: TileLink per-link channel parameters.

9
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Signal Naming Conventions
Other than the clock and reset signals, TileLink signal names consist of the channel identifier
(a–e) followed by an underscore, followed by the name of the signal (enumerated in the following
subsections).

For devices with multiple TileLink interfaces, it is recommended to prefix all TileLink signal
names with some descriptive token and an underscore. For example, a opcode becomes
gpio a opcode.
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Clocking, Reset, and Power
TileLink is a synchronous bus protocol. Both master interface and slave interface on a TileLink
link must share the same clock, reset, and power. However, different links within the topology may
have different clocks, resets, and power.

Signal Type Width Description
clock X 1 Bus clock. Inputs are sampled on the rising edge.
reset X 1 Bus reset. Active HIGH. May be asserted asynchronously, but

must be deasserted synchronous with a rising edge of clock.

Table 3.4: TileLink Clock and Reset Signals common to all channels

Clock
Every channel samples its signals on the rising edge of the clock. Output signals may only change
after the rising edge of the clock.

Reset
Before deasserting reset, a valid, c valid, and e valid must be driven LOW by the master,
while b valid and d valid must be driven LOW by the slave. The valid signals may be driven
HIGH after the first rising edge of clock where reset is LOW. The valid signals must be driven
LOW for at least 100 cycles while reset is asserted.

Ready, control, and data signals are free to take any value during reset.

clock

reset

valid

Figure 3.1: Valid must be driven LOW for at least 100 cycles during reset

Power or Clock Crossing
It is forbidden for one side of a TileLink link to power down while its opposite is powered on.

If TileLink must cross between power or clock domains, a TileLink-to-TileLink adapter is needed
which acts as a slave in one domain and a master in the other domain. The two interfaces of this
adapter can then be safely powered, clocked, and reset separately from the other.

It is highly recommended that a crossing carefully coordinate with the rest of the SoC to ensure
that there are no inflight TileLink requests when one half of the crossing is reset or depowered. If
a TileLink message is ever lost or repeated, it could cause the entire TileLink bus to deadlock.
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Channel A (Mandatory)
Channel A flows from master interface to slave interface, carrying request messages sent to a
particular address. This channel is used by all TileLink conformance levels and is mandatory.

Signal Type Width Description
a opcode C 3 Operation code. Identifies the type of message carried by the

channel. (Table 5.2)
a param C 3 Parameter code. Meaning depends on a opcode; specifies

a transfer of caching permissions or a sub-opcode. (Sec-
tions 6.2, 7.2, 8.3)

a size C z Logarithm of the operation size: 2n bytes. (Section 4.6)
a source C o Unique, per-link master source identifier. (Section 5.4)
a address C a Target byte address of the operation. Must be aligned to a size.

(Section 4.6)
a mask D w Byte lane select for messages with data. (Section 4.6)
a data D 8w Data payload for messages with data. (Section 4.6)
a corrupt D 1 The data in this beat is corrupt. (Section 4.5)
a valid V 1 The sender is offering progress on an operation. (Section 4.1)
a ready R 1 The receiver accepted the offered progress. (Section 4.1)

Table 3.5: Channel A signals.
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Channel B (TL-C only)
Channel B flows from slave interface to master interface, carrying request messages sent to a
particular cached data block held by a particular master. This channel is used by the TL-C confor-
mance level and is optional in lower levels.

Signal Type Width Description
b opcode C 3 Operation code. Identifies the type of message carried by the

channel. (Table 5.2)
b param C 3 Parameter code. Meaning depends on b opcode; specifies a

transfer of caching permissions or a sub-opcode. (Section 8.3)
b size C z Logarithm of the operation size: 2n bytes. (Section 4.6)
b source C o Unique, per-link master source identifier. (Section 5.4)
b address C a Target byte address of the operation. Must be aligned to b size.

(Section 4.6)
b mask D w Byte lane select for messages with data. (Section 4.6)
b data D 8w Data payload for messages with data. (Section 4.6)
b corrupt D 1 Corruption was detected in data payload. (Section 4.5)
b valid V 1 The sender is offering progress on an operation. (Section 4.1)
b ready R 1 The receiver accepted the offered progress. (Section 4.1)

Table 3.6: Channel B signals.
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Channel C (TL-C only)
Channel C flows from master interface to slave interface. It can carry response messages to
Channel B requests sent to a particular cached data block. It is also used to voluntarily write back
dirtied cached data. This channel is used at the TL-C conformance level and is optional in lower
levels.

Signal Type Width Description
c opcode C 3 Operation code. Identifies the type of message carried by the

channel. (Table 5.2)
c param C 3 Parameter code. Meaning depends on c opcode; specifies a

transfer of caching permissions. (Section 8.3)
c size C z Logarithm of the operation size: 2n bytes. (Section 4.6)
c source C o Unique, per-link master source identifier. (Section 5.4)
c address C a Target byte address of the operation. Must be aligned to c size.

(Section 4.6)
c data D 8w Data payload for messages with data. (Section 4.6)
c corrupt D 1 Corruption was detected in data payload. (Section 4.5)
c valid V 1 The sender is offering progress on an operation. (Section 4.1)
c ready R 1 The receiver accepted the offered progress. (Section 4.1)

Table 3.7: Channel C signals.
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Channel D (Mandatory)
Channel D flows from slave interface to master interface. It carries response messages for Chan-
nel A requests sent to a particular address. It also carries acknowledgements for Channel C
voluntary writebacks. This channel is used by all TileLink conformance levels and is non-optional.

Signal Type Width Description
d opcode C 3 Operation code. Identifies the type of message carried by the

channel. (Table 5.2)
d param C 2 Parameter code. Meaning depends on d opcode; specifies per-

missions to transfer or a sub-opcode. (Sections 6.2, 7.2, 8.3)
d size C z Logarithm of the operation size: 2n bytes. (Section 4.6)
d source C o Unique, per-link master source identifier. (Section 5.4)
d sink C i Unique, per-link slave sink identifier. (Section 5.4)
d denied C 1 The slave was unable to service the request. (Section 4.5)
d data D 8w Data payload for messages with data. (Section 4.6)
d corrupt D 1 Corruption was detected in the data payload. (Section 4.5)
d valid V 1 The sender is offering progress on an operation. (Section 4.1)
d ready R 1 The receiver accepted the offered progress. (Section 4.1)

Table 3.8: Channel D signals.
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Channel E (TL-C only)
Channel E flows from master interface to slave interface. It carries acknowledgements of receipt of
Channel D response messages, which are used for operation serialization. This channel is used
at the TL-C conformance level and is optional in lower levels.

Signal Type Width Description
e sink C i Unique, per-link slave sink identifier. (Section 5.4)
e valid V 1 The sender is offering progress on an operation. (Section 4.1)
e ready R 1 The receiver accepted the offered progress. (Section 4.1)

Table 3.9: Channel E signals.



Chapter 4

Serialization

The five channels in TileLink are implemented as five physically distinct unidirectional parallel
buses. Each channel has a sender and a receiver. For the A, C, and E channels, the agent with
the master interface is the sender and the agent with the slave interface the receiver. For the B
and D channels, the agent with the slave interface is the sender and the agent with the master
interface the receiver.

Many TileLink messages contain a data payload, which, depending on the size of the message
and data bus, may need to be spread out across multiple clock cycles (or beats). A multi-beat
message is often called a burst. TileLink messages without a data payload are always exchanged
in a single beat. It is forbidden in TileLink to interleave the beats of different messages on a
channel. Once a burst has begun, the sender must not send beats for any other message until the
last beat of the burst has been accepted by the receiver. The duration of a burst is determined by
the channel’s size field.

Progress on an operation is regulated by the exchange of beats between sending and receiving
agents on a particular channel. The sender of a beat raises the channel valid signal to offer the
availability of a beat on the channel. Receivers raise the channel ready signal to indicate their
ability to accept a beat. The receiver lowers the ready signal to indicate that they are busy and
are not accepting a beat. Only when both ready and valid are raised concurrently is the content
of the beat considered exchanged.

The rest of this chapter lays out the flow control and deadlock avoidance rules used to govern
when ready and valid may be toggled. We also define how TileLink agents may be connected
together, and define rules for how request/response message pairs can be ordered. We finally
discuss interfacting with legacy bus standards, error handling, and how bursted data is mapped
onto a physical data bus of a particular width.

17
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Flow Control Rules
In order to implement correct ready-valid handshaking, these rules must be followed:

• If ready is LOW, the receiver must not process the beat and the sender must not consider
the beat processed.
• If valid is LOW, the receiver must not expect the control or data signals to be a syntactically

correct TileLink beat.
• valid must never depend on ready. If a sender wishes to send a beat, it must assert valid

independently of whether the receiver signals that it is ready.
• As a consequence, there must be no combinational path from ready to valid or any of the

control and data signals.
• A receiver may only hold ready LOW in accordance with the deadlock freedom rules in

Section 4.2.

Anything not forbidden is allowed. In particular, it is acceptable for a receiver to drive ready in
response to valid or any of the control and data signals. For example, an arbiter may lower
ready if a valid request is made for an address which is busy. However, whenever possible, it is
recommended that ready be driven independently so as to reduce the handshaking circuit depth.

Note that a sender may raise valid and then lower it on the following cycle, even if the message
was not accepted on the previous cycle. For example, the sender might have some other higher
priority task to perform on the following cycle, instead of trying to send the rejected message
again. Furthermore, the sender may change the contents of the control and data signals when a
message was not accepted.

On TileLink channels which can carry bursts, there are additional restrictions. A burst is said to
be in progress after the first beat has been accepted and until the last beat has been accepted.
When a burst is in progress, if valid is HIGH, the sender must additionally present:

• Only a beat from the same message burst.
• Control signals identical to those of the first beat.
• Data signals corresponding to the previous beat’s address plus the data bus width in bytes.
• Final signals changing only once within each burst.
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clock

a_ready

a_valid

a_opcode 0 0 0 0 0 0 4 0

a_size 5 5 5 0 6 2 4 1

F beat 0 F-1 F-1 F-2 F-3 G-0 H-0 I-0 J-0 K-0

Figure 4.1: Ready-Valid Signaling for 6 messages in a 64-bit A Channel

One waveform which obeys these rules is illustrated for an 8-byte-wide channel in Figure 4.1.
Notice that the validity of all control and data signals are predicated on valid HIGH. A beat is
exchanged only when both ready and valid are HIGH.

There are 6 messages sent in this figure: F, G, H, I, J, K. The first message, F, has size 5,
which indicates the operation accesses 25 = 32 bytes. Opcode 0 is a PutFullData message, so
F carries data. Because Channel A carries 8-byte beats, there are 4 beats of data to exchange.
These are indicated as F-0, F-1, F-2, and F-3. The first cycle on which F-0 is presented, the
slave does not accept it. The master chooses to repeat F-0 and it is then accepted. After F-0 is
accepted, burst F is considered in progress. Therefore, the master has no choice but to repeat F-1
until it is accepted. However, the master is still free to lower valid during the burst. The master
then continues to present beats of F in order, as it must, until the last beat F-3 is accepted.

The second message, G, has size 0, indicating a 1 byte message. This fits into a single beat and is
exchanged immediately. Message H (an 8 beat burst) was presented by the master, but rejected.
As the first beat of the burst was not accepted, the burst is not in progress and the master chooses
to present a different message, I, on the following cycle instead. Message H need never be sent.

Message J has opcode 4, which on Channel A indicates a Get. Even though the Get operates on
16 bytes as indicated by a size, message J itself carries no data, and thus fits in a single beat,
which is accepted immediately. Message K can then be issued and accepted the following cycle.
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Deadlock Freedom
TileLink is designed to be deadlock-free by construction. To guarantee that a TileLink network
will never deadlock, we specify two sets of rules to which conforming systems must adhere. First,
we define rules that govern the conditions under which a receiving agent may reject a beat of
a message by lowering ready. Second, we define rules on allowable topologies of a TileLink
network: The structure of agents and links must be a DAG.

By combining these two rulesets with the strict prioritization of channels within the network,
we can provably guarantee that correct TileLink implementations will not deadlock.

Definitions Used in Rules
All TileLink operations comprise an ordered sequence of messages that are sent between agents.
We use the following terms when defining the deadlock-freedom rules that apply to a given mes-
sage based on its relative position in the overall ordering:

request message: a message specifying an operation to perform (access or transfer).

follow-up message: a message sent as a result of receiving some other message.

response message: a mandatory follow-up message paired to a request.

recursive message: any follow-up message nested inside a request/response pair.

forwarded message: a recursive message that is at the same level of priority as the message
that initiated it.

Every request message must eventually be answered with a response message. A response
message always has higher priority than its initiating request message. An individual message
may be both a request and a response; responses that are also requests will trigger a further
response.

A recursive message X nested inside request W and response Z must have greater than or equal
priority to W and less than Z. X itself must bet sent after W and before Z. If the recursive request
X has a response Y , Y must have a priority less than or equal to Z and be received after X is
sent and before Z is sent.

A recursive message that has the same priority as the message that triggered it is termed a
forwarded message. An agent that has both one or more master interfaces and one or more
slave interfaces, and that forwards messages from one to the other is termed a forwarding agent.
Forwarding agents are important in constructing topologies of hierarchical memories and buses,
and have additional rules governing how the ready signals of their master and slave interfaces
are coupled, as explained in the following subsection.
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Forward Progress Rules for Agents

A receiver is under no obligation to present ready HIGH when valid is LOW. However, when a
sender presents valid HIGH, ready must be HIGH unless the receiver has a legitimate reason
for rejecting the beat. In TileLink, there are only four legitimate reasons a conforming agent may
reject a valid beat by lowering ready:

1. A receiver may choose to enter a bounded busy period, during which it never raises ready.

• There must exist a fixed number of cycles that the bounded busy period is guaranteed
to never exceed.

• The receiver may enter a busy period arbitrarily, but between busy periods it must ac-
cept at least one beat.

• For example, when dealing with periodic busy periods (e.g., a DDR refresh), this re-
striction can be met by placing a single entry buffer in front of the controller. The buffer
agent raises ready until the buffer is filled. Then, when the controller has completed
its refresh, it can drain the buffer and process the stored beat, making the buffer agent
raise ready within a fixed number of cycles.

2. While a response to a request message received on channel X is being rejected, the re-
sponding agent may lower ready on all channels with priority ≤ X indefinitely.

• The complete list of response messages triggering this rule can be found in Table 5.3.

• For example, consider a simple slave that received a Get on channel A and is now
trying to send the response message AccessAckData out channel D. If that response
is blocked because d ready is LOW, then the slave may hold its a ready LOW.

• If a TL-C agent received a request on channel A and is blocked trying to send a re-
sponse out channel D, this rule does not permit blocking channels B or C, but only
channel A.

3. While a recursive message following a request message from channel X is being rejected,
the sender may lower ready on all channels with priority ≤ X indefinitely. (Relevant only to
forwarding or TL-C agents.)

• For example, consider a crossbar that is trying to forward a Get on its slave-side channel
A output. While the crossbar waits for this message to be accepted, it may hold ready
LOW on all of its master-side channel A inputs.

4. While a response to a message sent on channel X has not been received, the receiver may
lower ready on all channels with priority ≤ X indefinitely. (Relevant only to forwarding or
TL-C agents.)

• Agents may only wait for responses to messages whose last beat has already been
sent.

• For example, consider a crossbar that previously forwarded a Get on its slave-side
channel A output. While the crossbar waits for a response, it may hold ready LOW on
all of its master-side channel A inputs



22 TileLink Specification, Version 1.8.0

These four rules are exhaustive. If you are writing an agent, you must ensure that if your ready
is LOW while valid is HIGH one of the four rules applies. An agent which fails to abide by these
rules in all cases is non-conforming and jeopardizes the forward progress of the whole TileLink
network.
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Figure 4.2: A TileLink agent graph, with boxes denoting RTL modules and circles agents.

Topology Rules for Networks
Every TileLink network can be represented as an agent graph, and this graph can be used to
determine whether the network guarantees deadlock freedom. The TileLink agent graph contains
one node per agent and one edge for each TileLink link. Edges in the agent graph point from
master to slave. Figure 4.2 illustrates an example of a TileLink agent graph. Blue boxes indicate
RTL modules, while yellow circles indicate agents. A legal TileLink system must have a directed
acyclic agent graph (DAG). Any cycles in the graph can lead to deadlock.

To clarify this restriction, we need a more precise definition of a TileLink agent. The intuitive
definition is that two TileLink links are connected to the same TileLink agent if a message from
one link can result in a recursive message on the other link without first passing through any other
TileLink link. Notice that even if two different TileLink links connect to the same RTL module, this
does not mean that the module is a single agent with two links; there might be two distinct agents
inside the module.

Consider, for example, a TileLink crossbar connected to many TileLink links. A message received
on any slave port might be forwarded to any master port, and vice versa. Therefore, all the ports
of the crossbar (and all of its links) connect to a single TileLink crossbar agent.

Conversely, consider a TileLink to PCIe bridge. It has one slave port and one master port. TileLink
messages sent to the slave port do not cause recursive message to arrive on the master port.
Similarly, messages sent to the master port do not cause recursive message to arrive on the slave
port. Therefore, the bridge is actually two independent agents contained in one RTL module.

After constructing the agent graph and ruling it a DAG, and assuming that all agents abide by
the forward progress rules delineated in the previous section, we can then prove that the TileLink
network is guaranteed to be deadlock free. The general form of this proof is beyond the scope of
this document.
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Request-Response Message Ordering
We now define the rules governing when response messages can be sent, with a particular em-
phasis on bursts that contain multiple beats. The first beat of the response message may be
presented on the response channel:

• on the same cycle that the first beat of the request message is presented, but not before.
• before all the beats of a burst request message have been accepted.
• after an arbitrarily long delay.

Beats following the first beat of a burst response message may also be presented after an arbi-
trarily long delay, but no beats from other messages may be interleaved meanwhile.

The fact that a response message can be recieved concurrently and combinationally with the first
beat of the request message being accepted (and possibly before the request message has even
finished being sent), interacts with the forward progress rules in Section 4.2.2. Those rules govern
when an agent receiving a response may present e.g. d ready LOW while d valid is HIGH.

For example, a designer might be tempted to implement a master interface which holds d ready
LOW while a valid is HIGH in order to delay a concurrent response message until the following
cycle. However, this represents an indefinite delay on Channel D that is not allowed by any of the
forward progress ready rules. Indeed, a TL-UL–conforming slave interface may have connected
d valid and d ready to a valid and a ready respectively. Thus, the non-conforming master
interface has introduced a deadlock.

If a master interface cannot deal with receiving a response message on the same cycle as its
request message, then it can instead put a buffer after its Channel D input. The buffer absorbs a
concurrent Channel D response message and presents d ready HIGH until it has been filled. This
response handling logic satisfies the forward progress rules while allowing the slave to respond as
quickly as possible. All agents must follow the rules: Either proactively deal with the possibility of
a concurrent response, or place a buffer on the receiving input port to absorb it.

The following subsections elaborate on the interaction of request and response messages of dif-
ferent burst sizes.
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clock

a_ready

a_valid

a_opcode 4 4

a_size 5 5

d_ready

d_valid

d_opcode 1 1

d_size 5 5

Figure 4.3: Max and min delay between a Get (4) and an AccessAckData (1) on an 8-byte bus.

Burst Responses
Figure 4.3 illustrates two Get operations. The Get request messages (opcode 4) are sent out
Channel A. They are both accessing 25 = 32 bytes, which takes 4 beats of data on an 8-byte bus.
We see their 4-beat AccessAckData (opcode 1) response messages arriving on Channel D. The
first response message arrives after an arbitrary delay. The master interface must be willing to
wait indefinitely for this response message, as timeouts within the TileLink network are forbidden.
Eventually, the response message arrives, which is guaranteed by TileLink’s deadlock freedom.

The second Get is responded to within the same cycle as the request message itself is accepted.
This overlap is allowed as soon as the first beat of the Get is accepted. The response message
was presented no earlier: As a ready was LOW when the second Get was first presented, the
request was rejected, and so d valid also had to be LOW or the first rule would have been
violated.
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clock

a_ready

a_valid

a_opcode 0 0

a_size 5 5

d_ready

d_valid

d_opcode 0 0

d_size 5 5

Figure 4.4: Max and min delay between a PutFullData (0) and an AccessAck (0) on an 8-byte bus.

Burst Requests
Figure 4.4 illustrates two Put operations. The PutFullData request messages (opcode 0) are
sent out Channel A and their AccessAck response messages (opcode 0) come back on Channel
D. Again, the size is 25 = 32 bytes = 4 beats. However, this time it is the Channel A request
message that is a burst. As their names indicate, a PutFullData message carries a data payload,
whereas an AccessAck does not.

The first AccessAck message is delayed for an arbitrary amount of time, but the requestor contin-
ues to send the rest of the burst request message.

The second AccessAck message is presented on the same cycle as the first beat of the
PutFullData message. This is the earliest response allowed by the rules. If either a ready or
a valid had been LOW on that cycle, then d valid would have also been LOW. The previously
discussed ready caveat for the master interfaces applies here: the master interface must accept
a concurrent AccessAck, even before it has finished sending the PutFullData message. It may,
however, buffer the AccessAck message and leave it pending there until it completes sending the
request.



Copyright c© 2016, SiFive Inc. All rights reserved. 27

clock

a_ready

a_valid

a_opcode 2 2 1

a_size 4 4 3

d_ready

d_valid

d_opcode 1 1 1 1

d_size 4 4 4 3

Figure 4.5: Delay between an ArithmeticData (2) and an AccessAckData (1) on an 8-byte bus.

Burst Requests and Responses
The situation for request messages and response messages that both carry a data payload follows
the same rules. The first beat of the response message must be presented no earlier than the
first beat of the request message, but may be delayed arbitrarily. Additional response beats may
be delayed arbitrarily, and for most operations of this sort will be delayed for at least as long as it
takes to accept the corresponding beats of the request message.

Figure 4.5 illustrates Atomic operations that consist of a request message and response message
that both carry data. For the (24 = 16 byte = 2 beat) operations, there can be either a long delay
between request message and response message, or the beats of both may overlap. Response
beats may be delayed if they require data from the corresponding request beats. If the entirety
of each message fits within a single beat (23 = 8 byte = 1 beat), the messages may overlap
completely.
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Interfacing with Legacy Buses
Unfortunately, older buses do not guarantee forward progress. When controlling these buses, it
would violate TileLink’s ready rules if the bridge were to block TileLink traffic indefinitely while
waiting for the legacy bus to accept a message. Therefore, bridges to buses like AXI must include
a timeout, to fit within the auspices of the first forward progress rule. If the legacy bus does not
accept a request within this timeout, the request must be discarded and a TileLink error response
inserted.

If a legacy bus sends response messages, a bridge must also put a limit on how long it will wait
for those responses, unless the legacy bus can be verified to be deadlock free. If an unverified
legacy bus exceeds the time limit, the bridge must cancel the outstanding request, inject a TileLink
error response, and if the original legacy response ever arrives, discard it. To put a limit on the
memory required to track discarded responses, it is acceptable for a bridge to completely disable
a deadlocked legacy bus.

Inside the TileLink network itself, timeouts that cause alternative messages to be generated are
expressly forbidden. TileLink agents waiting on other TileLink agents must be infinitely patient.
However, this does not preclude TileLink watchdogs which trigger reset. TileLink is only deadlock
free when all agents conform to this specification. If one is not confident in the quality of all TileLink
agent implementations included in a given network, a watchdog can help.
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Errors
There are two types of errors that may be communicated across TileLink networks: corrupt data
errors and access denied errors.

Data corruption is signaled alongside the data on a channel. Any individual beat of data in a burst
may be marked as corrupt by an agent producing the message. A typical instance of corruption
occurs when an unrecoverable error is detected by ECC protection in an agent that was storing a
copy of the data.

The corrupt signal is present on all channels that carry data. However, only message types that
carry data may have beats marked as corrupt. Certain beats may be marked as corrupt while
others are not. The ones that are not marked corrupt still contain valid data. Every TileLink
request message requires a mandatory response message of a mandatory size, and all beats of
the message must be sent, even if every beat is marked as corrupt.

Access denied is a single bit control signal that indicates whether an attempted access or permis-
sions transfer operation was processed by the recipient or not. When an operation is denied, it
must have no effect on the permissions of the data block, nor change its contents, nor trigger any
side effects related to accessing the data.

This control signal is only present on the D channel, which is the only channel for responses to A
channel requests, which are the only type of requests which require increasing permissions. All
other requests are guaranteed sufficient permissions and so may not be denied. For example,
master agents that cache blocks of data must always restore permissions to their slave upon
request. Thus, they are not permitted to deny permissions transfers related to the copy.

Denial of access may be a permanent or a transient condition. When a response message that
carries data is denied, it must mark all beats of the message as corrupt.

How errors that have been signaled via either corrupt or denied fields are reported to the broader
system is beyond the scope of this document. For example, interrupts, traps, or exceptions may
be used to notify software that an error has occurred.
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clock

a ready

a valid

a opcode 0 1 4 0 1 4

a size 3 3 3 1 1 1

a address 0x40 0x40 0x40 0x62 0x62 0x62

a mask 0xf 0xa 0x4 0xf 0xc 0x4 0xc

Figure 4.6: Example of the mask bits carried by byte lanes on an 8-byte data bus. PutFullData
(0) must drive all active lanes of mask HIGH. Thus, the first message has all beats HIGH over
multiple beats. In comparison, PutPartialData (1) may drive active lanes of mask HIGH or LOW
for all beats. Get (4) messages are never multi-beat, but must still drive mask HIGH on active byte
lanes. For messages smaller than a beat, all inactive byte lanes of mask must be driven LOW
(mask bits 0 and 1 in the operations addressing 0x62).

Byte Lanes
TileLink channels which carry a data field always carry payload data little-endian naturally
aligned. In other words, if the data bus width is w bytes (which must be a power of two), then
(address & !(w − 1)) is the address of the data found in the zeroth byte lane. For example, if the
data bus is 16-bytes wide, then the byte lanes of the bus always carry data for the same lowest
nibble of the address; see Figure 4.7.

TileLink operations always describe power-of-two-sized byte ranges with an aligned address.
Mathematically, (address & ((1 << size ) − 1) = 0) always holds. Therefore, either an oper-
ation uses all of the data byte lanes or it uses a power-of-two-sized slice of them. The byte lanes
used by an operation are called the active byte lanes. In Figure 4.7, the inactive byte lanes are
crossed out.

On channels A and B, which carry a mask field, the mask must always be LOW for all inactive byte
lanes. Furthermore, for all messages other than PutPartialData, the bits of mask for all active
byte lanes must be HIGH. PutPartialData may lower individual bits of the mask and these bits
do not have to be contiguous.

The mask is also used for messages without a data payload. When the operation size is smaller
than the data bus, the mask should be generated identically to an operation which does carry a
data payload. For data-less operations which are larger than the data bus, all bits of the mask
should be HIGH, although the message remains a single-beat. See, for example, Figure 4.6.



Copyright c© 2016, SiFive Inc. All rights reserved. 31

clock

a ready

a valid

a opcode 0 0 0 0 0 0

a size 5 4 3 2 1 0

a address 0x40 0x10 0x58 0x24 0x76 0xc1

a mask[ 7: 0] 0xff 0xff 0x00 0xf0 0xc0 0x02

a mask[ 15: 8] 0xff 0xff 0xff 0x00 0x00 0x00

a data[ 7: 0] 0x40 0x50 0x10

a data[ 15: 8] 0x41 0x51 0x11 0xc1

a data[ 23: 16] 0x42 0x52 0x12

a data[ 31: 24] 0x43 0x53 0x13

a data[ 39: 32] 0x44 0x54 0x14 0x24

a data[ 47: 40] 0x45 0x55 0x15 0x25

a data[ 55: 48] 0x46 0x56 0x16 0x26 0x76

a data[ 63: 56] 0x47 0x57 0x17 0x27 0x77

a data[ 71: 64] 0x48 0x58 0x18 0x58

a data[ 79: 72] 0x49 0x59 0x19 0x59

a data[ 87: 80] 0x4a 0x5a 0x1a 0x5a

a data[ 95: 88] 0x4b 0x5b 0x1b 0x5b

a data[103: 96] 0x4c 0x5c 0x1c 0x5c

a data[111:104] 0x4d 0x5d 0x1d 0x5d

a data[119:112] 0x4e 0x5e 0x1e 0x5e

a data[127:120] 0x4f 0x5f 0x1f 0x5f

Figure 4.7: Example of the addresses of data carried in byte lanes on a 16-byte data bus. Notice
that the lowest nibble of the address of data carried in each byte lane is constant. Meanwhile, not
all byte lanes are used if the size is smaller than the data bus width. During burst operations,
agents internally auto-increment their data addresses, while control signals remain constant.
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Chapter 5

Operations and Messages

TileLink agents with master interfaces interact with the shared memory system by executing op-
erations. An operation effects a desired change to an address range’s data value, permissions or
location in the memory hierarchy. Operations are executed by the exchange of concrete messages
which flow over the five TileLink channels. To support an operation, all of its constituent messages
must be supported. This Chapter lists all the Tilelink operations and the messages exchanged
to implement them. We then detail the specific message exchange flow for each operation in the
Chapters detailing the three TileLink conformance levels: TL-UL in 6, TL-UH in 7, and TL-C in 8.

Operation Taxonomy
TileLink operation can be categorized into three groups:

• Accesses (A) read and/or write the data at a specified address.

• Hints (H) are informational only and have no direct effects.

• Transfers (T) move permissions or cached copies of data through the network.

Not every TileLink agent needs to support every operation. Depending on its TileLink conformance
level, an agent only needs to support the matching operations listed in Table 5.1.

Operation Type TL-UL TL-UH TL-C Purpose
Get A y y y read from an address range
Put A y y y write to an address range
Atomic A . y y read-modify-write an address range
Intent H . y y advance notification of likely future operations
Acquire T . . y cache a copy of an address range or increase

the permissions of that copy
Release T . . y write-back a cached copy of an address range

or relinquish permissions to a cached copy

Table 5.1: Summary of TileLink Operations

33
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Figure 5.1: Taxonomy of all operations (blue boxes) and their constituent messages (purple par-
allelograms). Dotted arrows indicate request-response message pairs. TL-UL conformance only
requires supporting Get and Put Access operations. TL-UH conformance requires all Hint and
Access operations. TL-C conformance requires all operations.

Message Taxonomy
Operations are executed by exchanging messages over the five TileLink channels. Some mes-
sages carry a data payload, while others do not. The name of a TileLink message always ends
with Data if it carries a data payload. Not every channel supports every type of message. Re-
ceipt of some messages must result in the eventual exchange of a response message sent to the
requestor. A graphical representation of the operation and message taxonomy with responses
shown can be seen in Figure 5.1. Table 5.2 lists all messages used in TileLink, grouped by confor-
mance level and operation. Table 5.3 presents the same information but ordered by channel and
opcode.

Notice that multiple message types have the same opcode. Different channels have different
namespaces for opcode numbering. Within any given channel, each possible message type has
a unique opcode. Furthermore, the same message type has the same opcode regardless of the
channel over which it is exchanged. Opcode space has been allocated for efficient decoding of
message properties. Future editions of the spec reserve the right to add further opcodes.
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Message Operation Opcode A B C D E Response
Get Get 4 y y . . . AccessAckData
AccessAckData Get or Atomic 1 . . y y .
PutFullData Put 0 y y . . . AccessAck
PutPartialData Put 1 y y . . . AccessAck
AccessAck Put 0 . . y y . TL-UL
ArithmeticData Atomic 2 y y . . . AccessAckData
LogicalData Atomic 3 y y . . . AccessAckData
Intent Intent 5 y y . . . HintAck
HintAck Intent 2 . . y y . TL-UH
AcquireBlock Acquire 6 y . . . . Grant or GrantData
AcquirePerm Acquire 7 y . . . . Grant
Grant Acquire 4 . . . y . GrantAck
GrantData Acquire 5 . . . y . GrantAck
GrantAck Acquire - . . . . y
ProbeBlock Probe 6 . y . . . ProbeAck or ProbeAckData
ProbePerm Probe 7 y . . . . ProbeAck
ProbeAck Probe 4 . . y . .
ProbeAckData Probe 5 . . y . .
Release Release 6 . . y . . ReleaseAck
ReleaseData Release 7 . . y . . ReleaseAck
ReleaseAck Release 6 . . . y . TL-C

Table 5.2: Summary of TileLink messages, grouped by conformance level and operation.
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Channel Opcode Message Operation Response
0 PutFullData Put AccessAck
1 PutPartialData Put AccessAck
2 ArithmeticData Atomic AccessAckData

A 3 LogicalData Atomic AccessAckData
4 Get Get AccessAckData
5 Intent Intent HintAck
6 AcquireBlock Acquire Grant or GrantData
7 AcquirePerm Acquire Grant

0 PutFullData Put AccessAck
1 PutPartialData Put AccessAck
2 ArithmeticData Atomic AccessAckData

B 3 LogicalData Atomic AccessAckData
4 Get Get AccessAckData
5 Intent Intent HintAck
6 ProbeBlock Probe ProbeAck or ProbeAckData
7 ProbePerm Probe ProbeAck

0 AccessAck Put
1 AccessAckData Get or Atomic
2 HintAck Intent

C 4 ProbeAck Probe
5 ProbeAckData Probe
6 Release Release ReleaseAck
7 ReleaseData Release ReleaseAck

0 AccessAck Put
1 AccessAckData Get or Atomic

D 2 HintAck Intent
4 Grant Acquire GrantAck
5 GrantData Acquire GrantAck
6 ReleaseAck Release

E - GrantAck Acquire

Table 5.3: Summary of TileLink messages, ordered by channel and opcode.
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Figure 5.2: A simple agent graph, showing two masters M0 and M1 who can both access slave
S0, while only M1 can access S1, via a cache C.

Addressing

All addresses carried by TileLink channels are physical addresses. From any node in the TileLink
DAG, every valid address must route over a single path to exactly one slave. In TileLink, the
address determines which operations are supported, which effects are generated, and which or-
dering restrictions are imposed. Properties that might be ascribed to an address space include its:
TileLink conformance level, memory consistency model, cacheability, FIFO ordering requirements,
executeability, privelege level, and any Quality-of-Service guarantees.

For example, when the master executes an operation on a particular address, it has no control
over whether or not that request is cached; the network decides. If a particular slave has side
effects on Get operations, then a cache placed between a master and that slave must not cache
Get operations sent to that slave’s addresses. Similarly, if a slave has side effects on Put oper-
ations, a cache must at least write-through Put operations sent to that slave’s addresses. The
specific mechanism by which these requirements are enforced is outside the scope of the TileLink
specification.

We recommend that a System-on-Chip implementation create a local address map which de-
scribes which regions of memory have side effects. This mapping can then be used by a cache
to determine if it is safe to cache a particular Get operation. Similarly, a crossbar can use the
address map to determine down which port to route an operation.

If using an address map, we further advise that the address map not be a single global map. As
one moves through the TileLink network, some properties of the address map can change. For
example, consider Figure 5.2. Master M1 can access both slaves S0 and S1, while master M0 can
only access slave S0. Beyond mere reachability, some TileLink agents may change the properties
of slaves behind them. For example, the cache C in Figure 5.2 may cause the address range of
slave S1 to support atomic operations, which the original slave did not support.

When it is not possible to know a-priori what sort of slave devices will be attached to a given
address range, the rest of the TileLink network must define what it expects. For example, one
can be conservative and suppose that all operations to the external address range have both Get
and Put effects, or one can be optimistic and require that only side-effect free devices will be
attached. When exposing a blind TileLink slave port, the port should be accompanied with doc-
umentation describing the properties of the addresses behind the port. Similarly, when exposing
a blind TileLink master port, the port should be accompanied with documentation describing what
assumptions the master has made about the addresses behind the port.
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We strongly recommend that if an address region has any Get or Put side effects that the address
region be rounded up and down to the next nearest multiple of 4kB. This makes it much easier for
a processor with a TLB to deal with the address map. The same reasoning applies to any other
address-range modifiers that might be defined in the future.

For obvious reasons, burst operations must not under- or over-run the boundaries of the slave
which manages the addresses in the operation. Slaves must therefore not declare support for
bursts larger than their minimum required address alignment (which we recommend be at least
4kB). Masters, on the other hand, must not generate operations larger than slaves support. How-
ever, one might have intermediate TileLink adapters which fragment operations into smaller op-
erations that fit within the target devices. How this information is made available to masters is
out-of-scope for this document, although a local address map scheme may again be used.

For the purposes of optimizing throughput, it is also helpful to track which address ranges respond
to independent requests in FIFO order. Generally, TileLink responses are completely out-of-order.
However, if one knows that a given address range responds in FIFO order, it becomes possible to
statelessly transform TL-UH into TL-UL. For these reasons, we recommend that the address map
also include an optional FIFO domain. All address ranges which share a common FIFO domain
identifier are known to mutually respond in the order of the requests they receive.

Future versions of this specification may define further requirements on the behavior of operations
targeting address ranges with certain properties.
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Channel Dest. Sequence Routed By Provides → For Use As
A slave request a address a source → d source
B master request b source b address → c address
C slave response c address .
C slave request c address c source → d source
D master response d source .
D master request d source d sink → e sink
E slave response e sink .

Table 5.4: Summary of TileLink routing fields

Source and Sink Identifiers

Not all routing in TileLink is performed by address. In particular, response messages must be
returned to the correct requestor. To make this possible, TileLink channels include one or more
link-local transaction identifier fields. These fields are used in combination with the address field
both to route messages and ensure that every inflight message can be uniquely identified with a
specific ongoing operation. Table 5.4 provides a summary of the fields used for routing request
and response messages on each channel.

At least one signal in every type of request message must be duplicated into its corresponding
response message. These signals are identified in the Provides column in Table 5.4. For example,
if a Get request had a source = 4, then the AccessAckData response must have d source = 4
as well. The paired response message will then be routed based on the corresponding signal,
shown in column For Use As. Other signals may also be required to be copied across individual
message pairs, as identified below and in the following chapters.

In addition to being used for routing responses, transaction identifiers help to uniquely associate
each message with an ongoing operation. Identifiers carry no inherent semantic meaning. There-
fore, they can be used by agents to tag a message so as to recognize the message’s response.
which can be useful when writing stateless forwarding agents, as well as non-blocking masters
and slaves. Identifiers are also useful for creating monitors of network behavior.

In order to enable agents to put an upper-bound on the amount of state needed to track inflight
operations, we impose per-link and per-channel uniqueness constraints on inflight identifiers. An
identifer is said to be inflight if an outstanding request using it has not yet received a response.
Each inflight request identifier of a channel in a particular link must be unique, as defined below.

Channels A and C route their requests based soley on address, but both provide source signals
for use by their responses on Channel D. Because their Channel D responses can be differentiated
based on d opcode as well as d source, we allow them to create their source identifiers from
separate namespaces. In other words, an inflight A and C request can each use the same value for
a source and c source, but that value cannot be reused within each channel while the request
is inflight.

Because Channel C responses to Channel B requests are routed to a single slave and uniquely
identified to an ongoing operation based on c address, we can further relax the uniqueness
restriction on Channel B requests, requiring only that the combination of b source and b address
be uniquely inflight. This relaxation is necessary in order to simultaneously probe multiple masters
on the same address, while also probing the same master on multiple addresses. Channel C
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responses may use any c source associated with the sender; this signal is ignored for those
message types.

Channel D must provide unique d sink transaction identifiers for inflight Grant requests. Channel
D responses may use any d sink associated with the sender; this signal is ignored for those
message types.

The range of possible identifiers is local to a particular TileLink link. Thus, the width of the source
or sink signal in channels can vary wildly between links. A crossbar, for example, might be
connected to two masters, M and N . Master M might declare that it uses sources 0-2 while
master N uses sources 0-1. The crossbar has two different links to these two masters, so the
link-local source identifiers are unrelated. In order for the crossbar to route messages from these
masters to slaves, the crossbar must somehow combine the source identifiers into a common
namespace for the messages it sends to slaves. One method might be to leave the M sources
as 0-2 and remap the N sources to 4-5. Then the crossbar would be able to determine which
responses go to which master. The mapping performed by an agent on transaction identifiers is
completely implementation defined. Note, for example, that our example crossbar choose to leave
source 3 unused in order to optimize its decoding logic. The width of source is common to all
channels within a particular link.
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clock

a_ready

a_valid

a_opcode 0 4 5

a_source 1 2 3

d_ready

d_valid

d_opcode 2 0 1

d_source 3 1 2

Figure 5.3: Operations do not necessarily receive responses in order.

Operation Ordering
Within a TileLink network, there may be multiple outstanding operations inflight at any given time.
These operations may be completed in any order. To make it possible for masters to execute
one operation after another, TileLink requires that slaves only send a response message once the
effect of the operation is completed. Therefore, if a processor needs to ensure that two writes, X
and Y , become visible to all other agents in that order, the processor should send a PutFullData
for X, wait for the AccessAck response, and only then send the PutFullData for Y .

TileLink slaves, including caches, need not actually write-back the Put operations before they are
acknowledged. The only restriction is that the entire TileLink network can not observe the old
state once the acknowledgement has been sent. This implies that all current cached copies of
the data are up-to-date before the acknowledgement is sent. For example, in the case of a Put
operation, an outer-level cache must either Probe inner caches with current copies or forward the
PutFullData message to those inner caches, and collect the appropriate response message(s)
before acknowledging the original request.

Response-issuing agents are responsible for ensuring that there is a valid serialization of the
operations they received. For example, suppose an agent receives two Puts, X and Y , which
it has not yet acknowledged. It must select some ordering, say X before Y . If this ordering
is selected, it must ensure that there are only three visible states: the state before X and Y , the
state after X and before Y , and the state after both X and Y . The agent need not issue responses
to X and Y in this order. However, once the agent has issued a response, say for Y , if it receives
a new operation Z, then Z must be ordered after Y .

These rules ensure that the globally visible total order of operations at each agent is consistent
with the Ack-induced partial orderings of the masters. A processor can implement fence instrutions
by waiting for outstanding Acks to return before executing new operations on the other side of the
fence. This capability makes it possible multiple processors to safely synchronize their operations
via the TileLink shared memory system.
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Chapter 6

TileLink Uncached Lightweight (TL-UL)

TileLink Uncached Lightweight (TL-UL) is the minimal TileLink conformance level. It is intended to
be used to save area in low-performance peripherals. There are two types of operations available
to agents in TL-UL. Both are memory access operations:

Get operation. Read some amount of data from backing memory.

Put operation. Write some amount of data to backing memory. The write can have a partial write
mask at byte granularity.

These operations are all completed using the two-stage request/response transaction structure
laid out in Section 4.3. However, in TL-UL, every message fits within a single beat; there are no
bursts. In total there are three request message types and two response message types related
to memory access operations in TL-UL. Table 6.1 enumerates these messages.

Message Opcode Operation A D Response
Get 4 Get y . AccessAckData
AccessAckData 1 Get or Atomic . y
PutFullData 0 Put y . AccessAck
PutPartialData 1 Put y . AccessAck
AccessAck 0 Put . y

Table 6.1: Summary of TL-UL messages.
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clock

a ready

a valid

a address 0x0 0x0 0x0 0x0 0x0

a opcode 0 4 0 1 4

a size 1 1 1 1 1

a mask 0x3 0x3 0x3 0x1 0x3

a data [ 7: 0] 0xcd 0x00 0xff

a data [15: 8] 0xab 0x00 0xff

d ready

d valid

d opcode 0 1 0 0 1

d data [ 7: 0] 0xcd 0xff

d data [15: 8] 0xab 0x00

Figure 6.1: Waveform containing Get and Put operations. PutFullData writes 0xabcd; Get
reads 0xabcd; PutFullData writes 0x0000; PutPartialData writes part of 0xffff; Get reads
0x00ff.

Flows and Waves
The figures in this section provide waveforms and message sequence charts for the TL-UL opera-
tions. Figure 6.1 shows a waveform containing both Get and Put operations between a single pair
of agents.

Message sequence charts display the ordering and dependencies of the messages sent between
agents and the actions they take in response over time. Time flows from the top of the sequence
chart to the bottom. Figure 6.2 shows the message flow employed by Get operations between a
single pair of agents. Figure 6.3 shows the message flow employed by Put operations between a
single pair of agents. Figure 6.4 shows the message flow employed by either operation through
two levels of master-slave agent pairs.
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Master Slave

Read
backing
memory

D: AccessAckData

Complete
operation

Initiate
operation A: Get

Figure 6.2: Overview of the Get message flow. A master sends a Get to a slave. Having read the
required data, the slave responds to the master with an AccessAckData.

Master Slave

Write
backing
memory

D: AccessAck

Complete
operation

Initiate
operation

A: PutPartialData

Master Slave

Write
backing
memory

D: AccessAck

Complete
operation

Initiate
operation

A: PutFullData

Figure 6.3: Overview of the Put message flows. A master sends an PutPartialData or
PutFullData to a slave. After writing the included data, the slave responds to the master with a
AccessAck.
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Master SlaveHierarchical

Read
backing
memory

D: AccessAckData

Complete
operation

Initiate
operation

Forward D

Forward A

A: Get

A: Get

D: AccessAckData

Figure 6.4: Message flow across multiple hierarchical agents to perform a memory access that
reads a block of data. The Hierarchical Agent forwards the Get to the outer Slave Agent and then
also forwards the response AccessAckData to the Master Agent.
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Messages
This section defines the encodings used for the signals comprising the five message types in-
cluded in TL-UL.

Get
A Get message is a request made by an agent that would like to access a particular block of
data in order to read it. Table 6.2 shows the encodings used for the signals of Channel A for this
message.

a opcode must be Get, which is encoded as 4.

a param is currently reserved for future performance hints and must be 0.

a size indicates the total amount of data the requesting agent wishes to read, in terms of
log2(bytes). a size represents the size of the resulting AccessAckData response message, not
this particular Get message. In TL-UL, a size cannot be larger than the width of the physical data
bus.

a source is the transaction identifier of the Master Agent issuing this request. It will be copied by
the Slave Agent to ensure the response is routed correctly (Section 5.4).

a address must be aligned to a size.

a mask selects the byte lanes to read (Section 4.6). a size, a address and a mask are required
to correspond with one another. Get must have a contiguous mask that is naturally aligned.

a data is ignored and may take any value. a corrupt is reserved and must be 0.

Channel A Type Width Encoding
a opcode C 3 Must be Get (4).
a param C 3 Reserved; must be 0.
a size C z 2n bytes will be read by the slave and returned.
a source C o The master source identifier issuing this request.
a address C a The target address of the Access, in bytes.
a mask D w Byte lanes to be read from.
a corrupt D 1 Reserved; must be 0.
a data D 8w Ignored; can be any value.

Table 6.2: Fields of Get messages.
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PutFullData
A PutFullData message is a request made by an agent that would like to access a particular
block of data in order to write it. The motivation for including a special opcode identifying a full
write mask will be explained in Chapter 7. Table 6.3 shows the encodings used for the signals of
Channel A for this message.

a opcode must be PutFullData, which is encoded as 0.

a param is currently reserved for future performance hints and must be 0.

a size indicates the total amount of data the requesting agent wishes to write, in terms of
log2(bytes). a size also represents the size of this request message. In TL-UL, a size can-
not be larger than the width of the physical data bus.

a source is the transaction identifier of the Master Agent issuing this request. It will be copied by
the Slave Agent to ensure the response is routed correctly (Section 5.4).

a address must be aligned to a size. The entire contents of a address to
a address+2**a size-1 will be written.

a mask selects the byte lanes to write (Section 4.6). One HIGH bit of a mask corresponds to one
byte of data written. a size, a address and a mask are required to correspond with one another.
PutFullData must have a contiguous mask, and if a size is greater than or equal the width of
the physical data bus then all a mask must be HIGH.

a data is the data payload to be written. Any byte of a data that is not masked by a mask is
ignored and can take any value. a corrupt being HIGH indicates that masked data in this beat is
corrupt.

Channel A Type Width Encoding
a opcode C 3 Must be PutFullData (0).
a param C 3 Reserved; must be 0.
a size C z 2n bytes will be written by the slave.
a source C o The master source identifier issuing this request.
a address C a The target address of the Access, in bytes.
a mask D w Byte lanes to be written; must be contiguous.
a corrupt D 1 Whether this beat of data is corrupt.
a data D 8w Data payload to be written.

Table 6.3: Fields of PutFullData messages.
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PutPartialData
A PutPartialData message is a request made by an agent that would like to access a particular
block of data in order to write it. PutPartialData can be used to write arbitrary-aligned data
at a byte granularity. Table 6.4 shows the encodings used for the signals of Channel A for this
message.

a opcode must be PutPartialData, which is encoded as 1.

a param is currently reserved for future performance hints and must be 0.

a size indicates the range of data the requesting agent will posibly write, in terms of log2(bytes).
a size also represents the size of this request message. In TL-UL, a size cannot be larger than
the width of the physical data bus.

a source is the transaction identifier of the Master Agent issuing this request. It will be copied by
the Slave Agent to ensure the response is routed correctly (Section 5.4).

a address must be aligned to a size. Some subset of the contents of a address to
a address+2**a size-1 will be written.

a mask selects the byte lanes to write (Section 4.6). One HIGH bit of a mask corresponds to
one byte of data written. a size, a address and a mask are required to correspond with one
another. However, PutPartialData may write less data than a size, depending on the contents
of a mask. Any HIGH bits of a mask must be contained within an aligned region of a size, but the
HIGH bits do not have to be contiguous.

a data is the actual data payload to be written. Any byte of a data that is not masked by a mask
is ignored and can take any value. a corrupt being HIGH indicates that masked data in this beat
is corrupt.

Channel A Type Width Encoding
a opcode C 3 Must be PutPartialData (1).
a param C 3 Reserved; must be 0.
a size C z Up to 2n bytes will be written by the slave.
a source C o The master source identifier issuing this request.
a address C a The target base address of the Access, in bytes.
a mask D w Byte lanes to be written.
a corrupt D 1 Whether this beat of data is corrupt.
a data D 8w Data payload to be written.

Table 6.4: Fields of PutPartialData messages.
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AccessAck
AccessAck serves as a data-less acknowledgement message to the original requesting agent.
Table 6.5 shows the encodings used for the signals of Channel D for this message.

d opcode must be AccessAck, which is encoded as 0.

d param is reserved for use with TL-C opcodes and must be assigned 0.

d size contains the size of the data that was accessed, though this particular message contains
no data itself. In a request/response message pair, d size and a size must always correspond.
In TL-UL, d size cannot be larger than the width of the physical data bus.

d source was saved from a source in the request and is now used to route this response to the
correct destination (Section 5.4).

d sink is ignored and can be assigned any value.

d data is ignored and can be assigned any value.

d corrupt is reserved and must be 0.

d denied indicates that the slave did not process the memory access.

Channel D Type Width Encoding
d opcode C 3 Must be AccessAck (0).
d param C 2 Reserved; must be 0.
d size C z 2n bytes were accessed by the slave.
d source C o The master source identifier receiving this response.
d sink C i Ignored; can be any value.
d denied C 1 The slave was unable to service the request.
d corrupt D 1 Reserved; must be 0.
d data D 8w Ignored; can be any value.

Table 6.5: Fields of AccessAck messages.
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AccessAckData
AccessAckData serves as an acknowledgement message including data to the original requesting
agent. Table 6.6 shows the encodings used for the signals of Channel D for this message.

d opcode must be AccessAckData, which is encoded as 1.

d param is reserved for use with TL-C opcodes and must be 0.

d size contains the size of the data that was accessed, which corresponds to the size of the
data being included in this particular message. In a request/response message pair, d size and
a size must always correspond. In TL-UL, d size cannot be larger than the width of the physical
data bus.

d source was saved from a source in the request and is now used to route this response to the
correct destination (Section 5.4).

d sink is ignored and can be assigned any value.

d data contains the data that was accessed by the operation.

d corrupt being HIGH indicates that masked data in this beat is corrupt.

d denied indicates that the slave did not process the memory access. If d denied is HIGH then
d corrupt must also be high.

Channel D Type Width Encoding
d opcode C 3 Must be AccessAckData (1).
d param C 2 Reserved; must be 0.
d size C z 2n bytes were accessed by the slave.
d source C o The master source identifier receiving this response.
d sink C i Ignored; can be any value.
d denied C 1 The slave was unable to service the request.
d corrupt D 1 Whether this beat of data is corrupt.
d data D 8w The data payload.

Table 6.6: Fields of AccessAckData messages.
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Chapter 7

TileLink Uncached Heavyweight
(TL-UH)

TileLink Uncached Heavyweight (TL-UH) is intended for use beyond the outermost cache layer,
where no permission transfer operations are required. It builds on TL-UL by providing additional
operations:

Atomic operation. Atomically read and return the extant data value while simultaneously writing
a new value that is the result of some logical or arithmetic operation.

Hint operation. Provide an optional hint related to some performance optimization.

Burst messages. Allow messages with data larger than the width of the physical data bus to
be transmitted as bursts occurring over multiple cycles. Applies to various data-containing
messages within the Get, Put and Atomic operations.

Atomic operations allow agents to access a particular block of data in order to perform a memory
operation that atomically reads and returns the current data value while simultaneously writing
a new value that is the result of some logical or arithmetic operation. Each operation takes two
operands; one is the data carried with the Atomic message, and the second is the extant data value
at the target address. This operation returns a copy of the original data to the requestor. Identifying
the logical vs arithmetic operations is useful because the ALU requirements significantly differ for
implementing the two sub-classes of operation.

Hint operations serve as a mechanism for implementing optional performance optimizations. While
they may cause agents to act to change the permissions available on certain data blocks, they
never modify the value of data. The information provided by a Hint may always be safely ignored
by any Slave Agent that receives it, though the recipient must still send an acknowledgement
message.

Burst messages allow operations to target larger address ranges, and specifically enable mes-
sages with data sizes bigger than the width of the physical data bus. Any of the various messages
within Get, Put and Atomic operations that contain *Data in their name can be a burst. No new
message types are added with the burst capability; instead, certain signalling restrictions from
Chapter 6 are removed. See Sections 4.1 and 4.3 for details on how operations including bursts
are serialized and sequenced.
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The new operations are also completed using the paired request/response transaction structure
laid out in Section 4.3. In total there are three request messages and one response message
added by TL-UH to the messages defined for TL-UL. Table 7.1 enumerates these messages.

Message Opcode Operation A D response message
Get 4 Get y . AccessAckData
AccessAckData 1 Get or Atomic . y
PutFullData 0 Put y . AccessAck
PutPartialData 1 Put y . AccessAck
AccessAck 0 Put . y from TL-UL
ArithmeticData 2 Atomic y . AccessAckData
LogicalData 3 Atomic y . AccessAckData
Intent 5 Intent y . HintAck
HintAck 2 Intent . y added in TL-UH

Table 7.1: Summary of TL-UH messages.
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clock

a ready

a valid

a address 0x0 0x0 0x0 0x0 0x0

a opcode 5 0 2 3 4

a param 1 4 3

a data 0x1 0x1 0x3

d ready

d valid

d opcode 2 0 1 1 1

d data 0x1 0x2 0x3

Figure 7.1: Waveform containing Atomic and Hint operations. Prefetch with intent to write; Put
storing 0x1; Atomic add of 0x1 returning 0x1; Atomic swap of 0x3 returning 0x2; Get loading 0x3.

Flows and Waves
The figures in this section provide waveforms and message sequence charts for each of the addi-
tional TL-UH operations. Figure 7.1 shows a waveform containing both Atomic and Hint operations
between a single pair of agents. Figure 7.2 shows the message flow employed by Atomic oper-
ations between a single pair of agents. Figure 7.3 shows the message flow employed by Hint
operations between a single pair of agents.

For waveforms of burst messages please refer to Section 4.1 and 4.3.
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Figure 7.2: Message flow to perform an atomic memory access operation.
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Figure 7.3: Message flow to perform a hint operation.
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Messages
This section defines the encodings used for the signals comprising the four message types in-
cluded in TL-UH: ArithmeticData, LogicalData, Intent, HintAck.
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ArithmeticData
An ArithmeticData message is a request made by an agent that would like to access a particular
block of data in order to read-modify-write it by applying an arithmetic operation. Table 7.2 shows
the encodings used for the signals of Channel A for this message.

a opcode must be ArithmeticData, which is encoded as 2.

a param specifies the specific atomic arithmetic operation to perform. The set of supported arith-
metic operations is listed in Table 7.3. It consists of { MIN, MAX, MINU, MAXU, ADD }, representing
signed and unsigned integer maximum and minimum functions, as well as integer addition.

a size is the operand size, in terms of log2(bytes). It reflects both the size of this request’s data
as well as the size of the AccessAckData response.

a source is the transaction identifier of the Master Agent issuing this request. It will be copied by
the Slave Agent to ensure the response is routed correctly (Section 5.4).

a address must be aligned to a size.

a mask selects the byte lanes to read-modify-write (Section 4.6). One HIGH bit of a mask cor-
responds to one byte of data used in the atomic operation. a size, a address and a mask are
required to correspond with one another. The HIGH bits of a mask must also be naturally aligned
and contiguous within that alignment.

a data contains one of the arithmetic operands (the other is found at the target address). Any
byte of a data that is not masked by a mask is ignored and can take any value. a corrupt being
HIGH indicates that masked data in this beat is corrupt.

Channel A Type Width Encoding
a opcode C 3 Must be ArithmeticData (2).
a param C 3 See Table 7.3.
a size C z 2n bytes will be read and written by the slave.
a source C o The master source identifier issuing this request.
a address C a The target address of the Access, in bytes.
a mask D w Byte lanes to be read and written.
a corrupt D 1 Whether this beat of data is corrupt.
a data D 8w Data payload to be used as operand.

Table 7.2: Fields of ArithmeticData messages.
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Name Param Effect
MIN 0 Write the signed minimum of the two operands,

and return the old value.
MAX 1 Write the signed maximum of the two operands,

and return the old value.
MINU 2 Write the unsigned minimum of the two operands,

and return the old value.
MAXU 3 Write the unsigned maximum of the two operands,

and return the old value.
ADD 4 Write the sum of the two operands, and return the old value.

Table 7.3: ArithmeticData param field.
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LogicalData
A LogicalData message is a request made by an agent that would like to access a particular
block of data in order to read-modify-write it by applying a bitwise logical operation. Table 7.4
shows the encodings used for the signals of Channel A for this message.

a opcode must be LogicalData, which is encoded as 3.

a param specifies the specific atomic bitwise logical operation to perform. The set of supported
logical operations is listed in Table 7.5. It consists of { XOR, OR, AND, SWAP }, representing bitwise
logical xor, or, and, as well as a simple swap of the operands.

a size is the operand size, in terms of log2(bytes). It reflects both the size of the this request’s
data as well as the size of the AccessAckData response.

a source is the transaction identifier of the Master Agent issuing this request. It will be copied by
the Slave Agent to ensure the response is routed correctly (Section 5.4).

a address must be aligned to a size.

a mask selects the byte lanes to read-modify-write (Section 4.6). One HIGH bit of a mask cor-
responds to one byte of data used in the atomic operation. a size, a address and a mask are
required to correspond with one another. The HIGH bits of a mask must also be naturally aligned
and contiguous within that alignment.

a data contains one of the logical operands (the other is found at the target address). Any byte of
a data that is not masked by a mask is ignored and can take any value. a corrupt being HIGH
indicates that masked data in this beat is corrupt.

Channel A Type Width Encoding
a opcode C 3 Must be LogicalData (3).
a param C 3 See Table 7.5.
a size C z 2n bytes will be read and written by slave.
a source C o The master source identifier issuing this request.
a address C a The target address of the Access, in bytes.
a mask D w Byte lanes to be read and written.
a corrupt D 1 Whether this beat of data is corrupt.
a data D 8w Data payload to be written.

Table 7.4: Fields of LogicalData messages.

Name Param Effect
XOR 0 Bitwise logical xor the two operands, write the result,

and return the old value.
OR 1 Bitwise logical or the two operands, write the result,

and return the old value.
AND 2 Bitwise logical and the two operands, write the result,

and return the old value.
SWAP 3 Swap the two operands and return the old value.

Table 7.5: LogicalData param field.
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Intent
A Intent message is a request made by an agent that would like to signal its future intention to
access a particular block of data. Table 7.6 shows the encodings used for the signals of Channel
A for this message.

a opcode must be Intent, which is encoded as 5.

a param specifies the specific intention being conveyed by this Hint operation. Note that its in-
tended effect applies to the slave interface and possibly agents further out in the hierarchy. The
set of supported intentions is listed in Table 7.7. It consists of { PrefetchRead, PrefetchWrite
}, representing prefetch-data-with-intent-to-read and prefetch-data-with-intent-to-write.

a size is the size of the memory to which this intention applies.

a source is the transaction identifier of the Master Agent issuing this request. It will be copied by
the Slave Agent to ensure the response is routed correctly (Section 5.4).

a address must be aligned to a size.

a mask indicates the bytes to which the intention applies (Section 4.6). a size, a address and
a mask are required to correspond with one another.

a data is ignored and can take any value. a corrupt is reserved and must be 0.

A Channel Type Width Encoding
a opcode C 3 Must be Intent (5).
a param C 3 Intention encoding; See Table 7.7.
a size C z 2n bytes to which this intention applies.
a source C o The master source identifier issuing this request.
a address C a The target address of the Hint, in bytes.
a mask D w Byte lanes to which the Hint applies.
a corrupt D 1 Reserved; must be 0.
a data D 8w Ignored; can be any value.

Table 7.6: Fields of Intent messages.

Name Param Effect
PrefetchRead 0 Issuing agent intends to read target data.
PrefetchWrite 1 Issuing agent intends to write target data.

Table 7.7: Intent messages’ param field.
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HintAck
HintAck serves as an acknowledgement message for a Hint operation. Table 7.8 shows the
encodings used for the signals of Channel D for this message.

d opcode must be HintAck, which is encoded as 2.

d param is reserved and must be assigned 0.

d size contains the size of the data that was hinted about, though this particular message con-
tains no data itself.

d source was saved from a source in the request and is now used to route this response to the
correct destination (Section 5.4).

d sink is ignored and can be assigned any value.

d denied indicates that the slave did not process the hint.

d data is ignored and can be assigned any value. d corrupt is reserved and must be 0.

D Channel Type Width Encoding
d opcode C 3 Must be HintAck (2).
d param C 2 Reserved; must be 0.
d size C z 2n bytes were hinted about.
d source C o The master source identifier receiving this response.
d sink C i Ignored; can be any value.
d denied C 1 The slave was unable to service the request.
d corrupt D 1 Reserved; must be 0.
d data D 8w Ignored; can be any value.

Table 7.8: Fields of HintAck messages.
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Burst messages
Burst messages can contain data that is larger than the width of the physical data bus. The subset
of data that can be sent over a link in a single cycle is called a beat. Burst messages can be any
of the various messages within Get, Put and Atomic operations that contain *Data in their name.

See Section 4.1 for details on how a burst message is serialized. Three of the types of channel
signals delineated in Tabel 3.2 are distinguished by whether they can be toggled between beats
of a burst. The Data type signals (i.e., * data, * mask) are allowed to toggle between each beat.
The Control type signals (i.e., * address, * size, * param) must be held constant for the entire
burst. See Section 4.3 for details on how burst requests and responses comprising an operation
can be ordered with respect to one another.

The PutFullData opcode is included in the protocol because it is useful to agents that can make
performance optimizations in the presence of full write masks. If the PutFullData message is
a burst, such optimizing agents do not have to first collect the mask from every beat in order to
determine whether the mask of the entire message is full.
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Chapter 8

TileLink Cached (TL-C)

TileLink Cached (TL-C) completes TileLink by affording master agents the capability to cache
copies of blocks of shared data. These local copies must then be kept coherent according to
an implementation-defined coherence policy. The TL-C standard coherence protocol defined
in this chapter dictates what memory access operations are allowed to be performed on which
cached copies of the data, and what messages are available to transfer copies of data blocks.
The overlaid, implementation-defined coherence policy dictates how copies and permissions are
propagated through a specific TileLink agent network in response to received memory access op-
erations. Description of specific coherence policies is beyond the scope of this document. In total,
TL-C adds to the TileLink protocol specification: three new operations, three new channels, a new
five-step message sequence template, and ten new message types.

The new operations are transfer opertations that create or remove cached copies of data blocks.
Transfer operations never modify the value of data blocks, but rather transfer the read/write permis-
sions available on copies of them. Transfer operations interoperate seamlessly with the previously-
defined TL-UL and TL-UH memory access operations, in that they are serialized with respect to
one another. Because each transfer operation logically either happens before or happens after
each memory access operation, and all agents agree on this ordering, the coherence invariant is
preserved across the TileLink network.

As a memory access operation proceeds through the TileLink network, an interstitial cache may
nest a recursive transfer operation within it. The cache intercedes by first using a transfer operation
to obtain sufficient permissions on the block, then servicing the memory access using its coherent
local copy.

Cacheability is a property of the address, and TileLink implementations must prevent copies of
uncacheable addresses from being created (Chapter 5.3). Conversely, the memory access op-
erations previously defined in TL-UL and TL-UH may be used by masters to access a cacheable
address without caching it themselves. Certain masters may choose cache a particular data block,
while other masters at the same level of the memory hierarchy may choose not to.

The next section outlines the fundamental operations, messages, and permissions available for
use by designers in defining particular, implementation-dependent coherency policies. This spec-
ification does not mandate the use of any one particular policy, but instead defines a protocol
substrate on top of which policies can be built.

65
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Implementing Cache Coherence Using TileLink
All TileLink-based coherence policies are comprised of protocol operations that transfer permis-
sions to read and write copies of data blocks. Memory access operations require the correct
permissions to have been acquired by an agent before the agent can apply the access operation
to the cached copy. When an agent wants to process an access operation locally, it must first use
transfer operations to obtain the necessary permissions. Transfer operations create or remove
copies across the network, and thereby modify the permissions that each copy offers.

The fundamental permissions it is possible for a particular agent’s copy of a block to have are
None, Read, or Read+Write. The permissions available on a particular cached copy depend on
the current presence of copies in the cache hierarchy, as described below.

For any given address, there is exactly one path between any given master and the slave that
owns that address. When all such paths are overlaid on the TileLink network DAG, they form a
tree with a single slave at the root. For each address, this tree contains the paths along which all
operations targeting that address execute. If we elide all agents that cannot cache data, we are
left with a tree of caching agents. describing all the locations at which a particular address’s data
could possibly be cached.

At any given moment in logical time, some subset of those agents actually contain copies of
cached data. These agents form a Coherence Tree. The inclusive TileLink coherence protocol
requires the tree to grow and shrink in response to memory access operations. Every node in the
graph falls into one of four categories describing its position on the tree:

Nothing: A node that does not currently cache a copy of the data. Has neither read nor write
permissions.

Trunk: A node with a cached copy that is on the path between the Tip and the Root. Has neither
read nor write permissions on the copy. The copy may be out of date with respect to writes
occuring at the Tip.

Tip (with no Branches): A node with a cached copy that is serving as the point of write serializa-
tion. Has read and write permissions on its copy, which may contain dirty data.

Tip (with Branches): A node with a cached copy that is serving as the point of write serialization.
Has read-only permissions its copy, which may still contain dirty data from past writes.

Branch: A node with a cached copy that is above the Tip. Has read-only permissions on its copy.

Figure 8.1 shows several coherence trees overlaid on a single TileLink network. In A, the root node
of the tree has the only copy, which makes it both the root and the tip of the tree. In B, a master
has acquired write+read permissions by growing the trunk until it is at the tip. In C, another master
has acquired read permissions by growing a branch, meaning that the previous tip is now also a
read-only branch and the common parent node is the trunk tip. In D, another master has grown
a branch, further moving the tip back towards the root, and the original requestor has voluntarily
pruned its branch.

Table 8.1 describes which access operations can be performed on a node in which state, which is
defined raltive to its position in the tree Additional, policy-defined states can be based of off these
fundamental states.
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Permissions Supported Accesses
None None
Branch Get
Trunk None
Tip (w/ Branches) Get
Tip (no Branches) Get, PutPartial, PutFull, Logical, Arithmetic

Table 8.1: Relationships between permissions and access operations.
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Figure 8.1: Different possible coherence trees overlaid on a single TileLink network graph. TT is
Trunk Tip, T is trunk, B is branch. A. The root node has write+read permissions on the only copy.
B. A single master has write+read permissions on the trunk tip. C. Multiple masters have read
permissions on branches. D. Multiple masters have read permissions on branches, and some
branches have been pruned.
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Operations
The three new operations are termed transfer operations (Chapter 5) because they transfer a
copy of a block of data to a new location in the memory hierarchy:

Acquire: Creates a new copy of a block (or particular permissions on it) in the requesting master.

Release: Relinquishes a copy of the block (or particular permissions on it) back to the slave from
the requesting master.

Probe: Forcibly removes of a copy of the block (or particular permissions on it) from a master to
the requesting slave.

Acquire operations grow the tree, either by extending the trunk or by adding a new branch from
an existing branch or the tip. In order to do so, the old trunk or branches may have to be pruned
with recursive Probe operations before the new branch can be grown. Release operations prune
the tree by voluntarily shrinking it, typically in response to cache capacity conflicts.
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Channels
To provide support for transfer operations, TL-C adds three new channels to the two extant chan-
nels that were required to perform memory access operations. The A and D channels are also
repurposed to send additional messages to effect transfer operations. The five channels used by
transfer operations are:

Channel A. A master initiates acquiring permission to read or write a copy of a cache block.

Channel B. A slave queries or modifies a master’s permissions on a cached data block, or for-
wards a memory access to a master.

Channel C. A master acknowledges a Channel B message, potentially releasing permissions on
the block along with any dirty data. Also used to voluntarily write back dirtied cache data.

Channel D. A slave provides data or permissions to the original requestor, granting access to the
cache block. Also used to acknowledge voluntary writebacks of dirty data.

Channel E. A master provides final acknowledgment of transaction completion, used by the slave
for transaction serialization.
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Messages
Across the five channels, TL-C specifies ten messages comprising three operations.

Message Opcode Operation A B C D E Response
AcquireBlock 6 Acquire y . . . . Grant, GrantData
AcquirePerm 7 Acquire y . . . . Grant
Grant 4 Acquire . . . y . GrantAck
GrantData 5 Acquire . . . y . GrantAck
GrantAck - Acquire . . . . y
ProbeBlock 6 Probe . y . . . ProbeAck, ProbeAckData
ProbePerm 7 Probe . y . . . ProbeAck
ProbeAck 4 Probe . . y . .
ProbeAckData 5 Probe . . y . .
Release 6 Release . . y . . ReleaseAck
ReleaseData 7 Release . . y . . ReleaseAck
ReleaseAck 6 Release . . . y .

Table 8.2: Summary of TL-C Permission Transfer Operation Messages.
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Permissions Transitions
Transfers logically operate on permissions, and so messages that comprise them must specify
an intended outcome: an upgrade to more permissions, a downgrade to fewer permissions, or a
no-op leaving permissions unchanged. These changes are specified in terms of their effect on
the shape of the coherence tree for a particular address. We break the set of possible permission
transitions into six subsets; different subsets are available as parameters to certain messages, as
defined in the following subsection.

Category Contents
Permissions None, Branch, Trunk(Tip)
Cap toT (0), toB (1), toN (2)
Grow NtoB (0), NtoT (1), BtoT (2)
Prune TtoB (0), TtoN (1), BtoN (2)
Report TtoT (3), BtoB (4), NtoN (5)

Table 8.3: Categories of permissions transitions.

Table 8.3 shows all the permissions transitions any coherence policy based on TileLink could want
to express. They are group into four subsets.

Prune: comprises permissions downgrades that shrink the tree, and notes both the previous per-
missions and the new, lesser permissions.

Grow: comprises permissions upgrades that grow the tree, and notes both the previous permis-
sions and the new, increased permissions.

Report: comprises no-ops wherein the permissions remain unchanged, but reports what those
permissions currently are.

Cap: comprises permissions changes without specifying what the original permissions were, but
rather only what they should become.
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Figure 8.2: Overview of the transaction flows of TileLink operations. Movement of the black dot
indicates the the point of transaction serializion has been affected by the operation.

Flows and Waves
Transfer operations introduce new transaction flows which can be composed to form complete
cache coherence policy transactions. Figure 8.2 provides an overview of the three new flows.
Acquire requests always trigger a recursive Grant request and GrantAck response. Depending
on the state of the block’s permissions and the coherence policy, an Acquire may also trigger one
or more recursive Release or Probe operations.

Figure 8.3 shows a message flow that illustrates in more detail a transaction that contains all three
new operations. In this flow a master reacts to a memory access operation request by acquiring
permissions to read or write data in a local copy of the target data block. After this transaction has
completed, the master has acquired permissions to either read or write the cache block, as well as
a copy of the block’s data. Other masters were probed to force them to release their permissions
on the block and write back dirty data in their possession. Additionally, the master that issued the
Acquire also used a Release to voluntarily release their permissions on a cache block. Typically,
this type of transaction occurs when a cache must evict a block that contains dirty data, in order
to replace it with the block being refilled into the cache. After this transaction has completed, the
master has lost permissions to read or write the second cache block, as well as its copy of that
data. If the slave is capable of tracking which masters have copies of the block using a directory,
this metadata has been updated to reflect the change in permissions to both blocks.
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Figure 8.3: Overview of a transaction flow containing all three transfer operations.
1. A caching master sends an Acquire to a slave.
2. To make room for the expected response, the same master sends a Release.
3. The slave communicates with backing memory if required.
4. The slave acknowledges completion of the writeback transaction using a ReleaseAck.
5. The slave also sends any necessary Probes to other masters.
6. The slave waits to receive a ProbeAck for every Probe that was sent.
7. The slave communicates with backing memory if required.
8. The slave responds to the original requestor with a Grant.
9. The original master responds with a GrantAck to complete the transaction.
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Figure 8.4: Concurrency management rules for transfer operations. These comply with and ex-
pand upon the forward progress rules in Section 4.2.2.

While these three flows form the basis of all TileLink transactions involving cache block transfers,
there are a number of edge cases that arise when they are overlaid on each other temporally
or composed hierarchically. We now discuss how responsibility for managing this concurrency is
distributed across master and slave TileLink agents.

TileLink intentionally does not assume that there is point-to-point ordered delivery of messages.
In fact, messages from higher priority channels must be able to bypass lower priority messages in
the network, even if they are targetting the same agent. The slave serves as a convenient point of
synchronization across all the masters connected to it. Since every transaction must be initiated
via an Acquire message sent to a slave, the slave can trivially order the transactions. A very
safe implementation would be to accept only a single transaction at a time, but the performance
implications of doing so are dire, and it turns out we can be much more concurrent while continuing
to provide a correct serialization. Imposing some restrictions on agent behavior makes it possible
for us to guarantee that a total ordering of transactions can be constructed, despite the distributed
nature of the problem. Figure 8.4 provides an overview of the limits put on concurrency for each
operation. These rules comply with and expand upon the forward progress rules in Section 4.2.2.

Concurrency limits placed on TileLink agents are most easily understood in terms of issuing or
blocking request messages. All request messages generate response messages, and response
messages are guaranteed to eventually make forward progress. However, under certain condi-
tions, recursive request messages targeting the same block should not be issued until an out-
standing response message is received. We break these cases down by request message type:

Acquire: A master should not issue an Acquire if there is a pending Grant on the block. Once
the Acquire is issued the master should not issue further Acquires on that block until it
receives a Grant

Grant: A slave should not issue a Grant if there is a pending ProbeAck on the block. Once the
Grant is issued, the slave should not issue Probes on that block until it receives a GrantAck.

Release: A master should not issue a Release if there is a pending Grant on the block. Once the
Release is issued, the master should not issue ProbeAcks, Acquires, or further Releases
until it receives a ReleaseAck from the slave acknowledging completion of the writeback.
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Probe: A slave should not issue a Probe if there is a pending GrantAck on the block. Once the
Probe is issued, the slave should not issue further Probes on that block until it receives a
ProbeAck.

We now offer some example flows demonstrating concurrency limits being obeyed in message
sequence chart format. Figure 8.5 lays out a scenario where a Probe request is delayed. Masters
must continue to process and respond to Probes even with an outstanding Grant pending in the
network. Slaves must include an up-to-date copy of the data in Grants responding to Acquires
upgrading permissions, unless they are certain that that master has not been probed since the
Aquire was issued. Assuming a slave has blocked on processing a second transaction acquiring
the same block, the critical question becomes: When is it safe for a slave to process the pending
Acquire? If we were to assume point-to-point ordered delivery of messages to a particular agent,
it would be sufficient for the slave merely to have sent the Grant message to the original master
source. The slave could process further transactions on the block, and further Probes and Grants
to the same master would arrive in order. Since this ordering is not guaranteed, we instead rely
on the GrantAck message to allow the slave to serialized the two transactions.

We now turn to a second example of concurrency-limiting responsibility, which is put on the master.
If a master has an outstanding Release transaction on a block, it cannot respond to an incoming
Probe request on that block with ProbeAcks until it receives a ReleaseAck from the slave ac-
knowledging completion of the writeback. Figure 8.6 lays out this scenario in message sequence
chart form. This limitation serializes the ordering of the voluntary writeback relative to the ongo-
ing Acquire operation that generated the Probes. The slave cannot simply block the voluntary
Release transaction until the Acquire transaction completes, because the ProbeAck message in
that transaction could be blocked in the network behind the voluntary Release. From the slave
agent’s perspective, it must handle the situation of receiving a voluntary Release for a block an-
other master is currently attempting to Acquire. The slave must accept the voluntary Release as
well as any ProbeAcks resulting from Probe messages that have already been sent, and after-
wards provide a ReleaseAck and Grant message to each master before their transactions can be
considered complete. The voluntary write’s data can be used to respond to the original requestor
with a Grant, but the transaction cannot complete until the expected number of ProbeAcks have
been collected by the slave. This scenario is an example of two transaction message flows being
merged by the slave agent.

The final concurrency-limiting responsibility put on the Master Agent is to issue multiple Channel
A requests for the same block only when the transactions can be differentiated from one another
via unique transaction identifiers. For example, a Master Agent cache that has a write miss under
a read miss may issue an Acquire asking for write permission before the Grant providing read
permissions has arrived. However, it must use a unique transaction ID for the second Acquire
even though it is targeting the same address. The Master Agent cannot expect that the Slave
Agent will serialize multiple outstanding Acquires in any particular order, and it must send a
GrantAck for the first Grant[Data] it receives without waiting to receive the second one.
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Figure 8.5: Interleaved message flows demonstrating a slave using GrantAck to serialize Grant
and Probe.
1. Master A sends an Acquire first, but it gets delayed in the network.
2. Master B sends an Acquire second, but it arrives at the slave first, and is serialized before A’s.
3. The slave sends a Probe to Master A, which must process it even though it has pending Grant.
4. The slave receives Master A’s ProbeAck and sends Master B a Grant.
5. Master A’s Acquire arrives at the slave but cannot make forward progress due to the pending
GrantAck.
6. Once Master B responds with a GrantAck, Master A’s transaction can proceed as normal.
7. The slave probes Master B, but this probe is serialized relative to the previous Grant.
8. The slave must respond to Master A with the correct type of Grant (including a copy of the
data), given that Master A has been probed since sending its Acquire.
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Figure 8.6: Interleaved message flows demonstrating using ReleaseAck to serialize Release and
Probe.
1. Master A sends an Acquire to a slave.
2. At the same time, Master B chooses to evict the same block and issues a voluntary Release.
3. The slave then sends a Probe to Master B.
The slave waits to receive a ProbeAck for every Probe that was sent, but additionally also accepts
the voluntary Release.
The slave sends a ReleaseAck that acknowledges receipt of the voluntary writeback.
5. Master B does not respond to the Probe with a ProbeAck until it gets the acknowledgment
ReleaseAck.
6. Once Master B responds with a ProbeAck, Master A’s transaction can proceed as normal.
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TL-C Messages
Permissions transfers make use of three additional channels with six new messages, a new
Channel A message, and three new Channel D messages. The new channels are B, C,
and E. The new message types are Acquire, Probe, ProbeAck[Data], Release[Data],
ReleaseAck, Grant[Data] and GrantAck.
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AcquireBlock
An AcquireBlock message is a request message type used by a Master Agent with a cache to
obtain a copy of a block of data that it plans to cache locally. Master Agents can also use this
message type to upgrade the permissions they have on a block already in their possession (i.e.,
to gain write permissions on a read-only copy). Table 8.4 shows the encodings used for the fields
of Channel A for this message type.

a opcode must be AcquireBlock, which is encoded as 6.

a param indicates the specific type of permissions change the Master Agent intends to occur.
Possible transitions are selected from the Grow category of Table 8.3.

a size indicates the total amount of data the requesting Master Agent wishes to cache, in terms
of log2(bytes). As in a Get message, an AcquireBlock message does not contain data itself.
The response to this request may or may not contain a copy of the data in the block.

a address must be aligned to a size.

a mask provides the byte select lanes, in this case indicating which bytes to read. See Sec-
tion 4.6 for details. a size, a address and a mask are required to correspond with one another.
AcquireBlock must have a contiguous mask that is naturally aligned.

a source is the ID of the Master Agent issuing this request. It will be used by the responding
Slave Agent to ensure the response is routed correctly.

a data is ignored and can be assigned any value. a corrupt is reserved and must be 0.

Channel A Type Width Encoding
a opcode C 3 Must be AcquireBlock (6).
a param C 3 Permissions transfer: Grow (NtoB, NtoT, BtoT).
a size C s 2n bytes will be read by the slave and returned.
a source C c The master source identifier issuing this request.
a address C a The target address of the Transfer, in bytes.
a mask D w Byte lanes to be read from.
a corrupt D 1 Reserved; must be 0.
a data D 8w Ignored; can be any value.

Table 8.4: Fields of AcquireBlock messages on Channel A.
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AcquirePerm
An AcquirePerm message is a request message type used by a Master Agent with a cache
to upgrade permissions on a block without supplying a copy of the data contained in the block.
AcquirePerm must only be used in situations where no copy of the data is required to complete
the initiating operation. The primary example is the case where the block is being acquired in
order to be entirely overwritten. Table 8.5 shows the encodings used for the fields of Channel A
for this message type.

a opcode must be AcquirePerm, which is encoded as 7.

a param indicates the specific type of permissions change the Master Agent intends to occur.
Possible transitions are selected from the Grow category of Table 8.3.

a size indicates the total amount of data the requesting Master Agent wishes have permission to
cache, in terms of log2(bytes). As in a Get message, an AcquirePerm message does not contain
data itself. Additionally, no data will ever be returned to the requestor in response to this message.

a address must be aligned to a size.

a mask provides the byte select lanes, in this case indicating which bytes to read. See Sec-
tion 4.6 for details. a size, a address and a mask are required to correspond with one another.
AcquirePerm must have a contiguous mask that is naturally aligned.

a source is the ID of the Master Agent issuing this request. It will be used by the responding
Slave Agent to ensure the response is routed correctly.

a data is ignored and can be assigned any value. a corrupt is reserved and must be 0.

Channel A Type Width Encoding
a opcode C 3 Must be AcquirePerm (7).
a param C 3 Permissions transfer: Grow (NtoB, NtoT, BtoT).
a size C s 2n bytes will be read by the slave and returned.
a source C c The master source identifier issuing this request.
a address C a The target address of the Transfer, in bytes.
a mask D w Byte lanes to be read from.
a corrupt D 1 Reserved; must be 0.
a data D 8w Ignored; can be any value.

Table 8.5: Fields of AcquirePerm messages on Channel A.
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ProbeBlock
A ProbeBlock message is a request message used by a Slave Agent to query or modify the
permissions of a cached copy of a data block stored by a particular Master Agent. A Slave Agent
may revoke a Master Agent’s permissions on a cache block either in response to an Acquire from
another master, or of its own volition. Table 8.6 shows all the fields of Channel B for this message
type.

b opcode must be ProbeBlock, which is encoded as 6.

b param indicates the specific type of permissions change the Slave Agent intends to occur. Pos-
sible transitions are selected from the Cap category of Table 8.3. Probing Master Agents to cap
their permissions at a more permissive level than they currently have is allowed, and does not
result in a permissions change.

b size indicates the total amount of data the requesting agent wishes to probe, in terms of
log2(bytes). If dirty data is written back in response to this probe, b size represents the size
of the resulting ProbeAckData message, not this particular ProbeBlock message.

b address must be aligned to b size.

b mask provides the byte select lanes, in this case indicating which bytes to probe. See Sec-
tion 4.6 for details. b size, b address and b mask are required to correspond with one another.
ProbeBlock messages must have a contiguous mask.

b source is the ID of the Master Agent that is the target of this request. It is used to route the
request, e.g., to a particular cache. See Section 5.4 for details.

b data is ignored and can be assigned any value. b corrupt is reserved and must be 0.

Channel B Type Width Encoding
b opcode C 3 Must be ProbeBlock (6).
b param C 3 Permissions transfer: Cap (toN, toB, toT).
b size C s 2n bytes will be probed by the master and possibly returned.
b source C c The master source identifier being targeted by this request.
b address C a The target address of the Transfer, in bytes.
b mask D w Byte lanes to be read from.
b corrupt D 1 Reserved; must be 0.
b data D 8w Ignored; can be any value.

Table 8.6: Fields of ProbeBlock messages on Channel B.
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ProbePerm
A ProbePerm message is a request message used by a Slave Agent to query or modify the
permissions of a cached copy of a data block stored by a particular Master Agent. A Slave Agent
may revoke a Master Agent’s permissions on a cache block either in response to an Acquire from
another master, or of its own volition. ProbePerm must only be used in situations where no copy
of the data is required to complete the initiating operation. The primary example is the case where
the block is being acquired in order to be entirely overwritten. Table 8.7 shows all the fields of
Channel B for this message type.

b opcode must be ProbePerm, which is encoded as 7.

b param indicates the specific type of permissions change the Slave Agent intends to occur. Pos-
sible transitions are selected from the Cap category of Table 8.3. Probing Master Agents to cap
their permissions at a more permissive level than they currently have is allowed, and does not
result in a permissions change.

b size indicates the total amount of data the requesting agent wishes to probe, in terms of
log2(bytes). No data will ever be returned to the requestor in response to this message.

b address must be aligned to b size.

b mask provides the byte select lanes, in this case indicating which bytes to probe. See Sec-
tion 4.6 for details. b size, b address and b mask are required to correspond with one another.
ProbePerm messages must have a contiguous mask.

b source is the ID of the Master Agent that is the target of this request. It is used to route the
request, e.g., to a particular cache. See Section 5.4 for details.

b data is ignored and can be assigned any value. b corrupt is reserved and must be 0.

Channel B Type Width Encoding
b opcode C 3 Must be Probe (6).
b param C 3 Permissions transfer: Cap (toN, toB, toT).
b size C s 2n bytes will be probed by the master.
b source C c The master source identifier being targeted by this request.
b address C a The target address of the Transfer, in bytes.
b mask D w Byte lanes to be read from.
b corrupt D 1 Reserved; must be 0.
b data D 8w Ignored; can be any value.

Table 8.7: Fields of ProbePerm messages on Channel B.
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ProbeAck
A ProbeAck message is a response message used by a Master Agent to acknowledge the receipt
of a Probe. Table 8.8 shows all the fields of Channel C for this message type.

c opcode must be ProbeAck, which is encoded as 4.

c param indicates the specific type of permissions change that occurred in the Master Agent as
a result of the Probe. Possible transitions are selected from the Shrink or Report category of
Table 8.3. The former indicates that permissions were decreased whereas the latter reports what
they were and continue to be.

c size indicates the total amount of data that was probed, in terms of log2(bytes). This message
itself does not carry data.

c address is used to route the response to the original requestor. It must be aligned to c size.

c source is the ID of the Master Agent that is the source of this response.

c data is ignored and can be assigned any value. c corrupt is reserved and must be 0.

Channel C Type Width Encoding
c opcode C 3 Must be ProbeAck (4).
c param C 3 Permissions transfer: Shrink or Report (TtoB, TtoN,

BtoN, TtoT, BtoB, NtoN).
c size C s 2n bytes were probed; copied from b size.
c source C c The master source identifier of this response; copied from

b source.
c address C a The target address of the transfer; copied from b address.
c corrupt D 1 Reserved; must be 0.
c data D 8w Ignored; can be any value.

Table 8.8: Fields of ProbeAck messages on Channel C.
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ProbeAckData
A ProbeAckData message is a response message used by a Master Agent to acknowledge the
receipt of a Probe and write back dirty data that the requesting Slave Agent required. Table 8.9
shows all the fields of Channel C for this message type.

c opcode must be ProbeAckData, which is encoded as 5.

c param indicates the specific type of permissions change that occurred in the Master Agent as
a result of the Probe. Possible transitions are selected from the Shrink or Report category of
Table 8.3. The former indicates that permissions were decreased whereas the latter reports what
they were and continue to be.

c size indicates the total amount of data that was probed, in terms of log2(bytes), as well as the
amount of data contained in this message.

c address is used to route the response to the original requestor.

c source is the ID of the Master Agent that is the source of this response, copied from b source.

c data contains the data transferred by the operation. c corrupt being HIGH indicates that the
data in this beat is corrupt.

Channel C Type Width Encoding
c opcode C 3 Must be ProbeAckData (5).
c param C 3 Permissions transfer: Shrink or Report (TtoB, TtoN,

BtoN, TtoT, BtoB, NtoN).
c size C s 2n bytes were probed and are being written back; copied

from b size.
c source C c The master source identifier of this response; copied from

b source.
c address C a The target address of the transfer; copied from b address.
c corrupt D 1 Whether this beat of data is corrupt.
c data D 8w The data payload being transferred.

Table 8.9: Fields of ProbeAckData messages on Channel C.
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Grant
A Grant message is both a response and a request message used by a Slave Agent to acknowl-
edge the receipt of a Acquire and provide permissions to access the cache block to the original
requesting Master Agent. Table 8.10 shows the encodings used for fields of Channel D for this
message type.

d opcode must be Grant, which is encoded as 4.

d param indicates the specific type of accesses that the Slave Agent is granting permission to
occur on the cached copy of the block in the Master Agent as a result of the Acquire request.
Possible permission transitions are selected from the Cap category of Table 8.3. Permissions are
increased without specifying the original permissions. Permissions may exceed those requested
by the a param field of the original request.

d size contains the size of the data whose permissions are being transferred, though this partic-
ular message contains no data itself. Must be identical to the original a size.

d sink is the identifier the of the agent issuing this message used to route its Channel E response,
whereas d source should have been saved from a source in the original Channel A request, and
is now being re-used to route this response to the correct destination. See Section 5.4 for details.

d data is ignored and can be assigned any value.

d denied indicates that the slave did not process the permissions transfer. In this case, d param
should be ignored, meaning the coherence policy permissions of the block remain unchanged.
d corrupt is reserved and must be 0.

Channel D Type Width Encoding
d opcode C 3 Must be Grant (4).
d param C 2 Permissions transfer: Cap (toT, toB, toN).
d size C s 2n bytes were accessed by the slave; copied from a size.
d source C c The master source identifier receiving this response; copied

from a source.
d sink C m The slave sink identifier issuing this request.
d denied C 1 The slave was unable to service the request.
d corrupt D 1 Reserved; must be 0.
d data D 8w Ignored; can be any value.

Table 8.10: Fields of Grant messages on Channel D.
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GrantData
A GrantData message is a both a response and a request message used by a Slave Agent to
provide an acknowledgement along with a copy of the data block to the original requesting Master
Agent. Table 8.11 shows the encodings used for fields of the Channel D for this message type.

d opcode must be GrantData, which is encoded as 5.

d param indicates the specific type of accesses that the Slave Agent is granting permissions to
occur on the cached copy of the block in the Master Agent as a result of the Acquire request.
Possible permission transitions are selected from the Cap category of Table 8.3. Permissions are
increased without specifying the original permissions. Permissions may exceed those requested
by the a param field of the original request.

d size contains the size of the data block whose permissions are being transferred, which cor-
responds to the size of the data being sent with this particular message. Must be identical to the
original a size.

d sink is the identifier the of the agent issuing this response message, whereas used to route its
Channel E response, whereas d source should have been saved from a source in the original
Channel A request, and is now being re-used to route this response to the correct destination.
See Section 5.4 for details.

d data contains the data being transferred by the operation, which will be cached by the Master
Agent.

d denied indicates that the slave did not process the permissions transfer. In this case, d param
should be ignored, meaning the coherence policy permissions of the block remain unchanged.
d corrupt being HIGH indicates that the data in this beat is corrupt. If d denied is HIGH then
d corrupt must also be high.

Channel D Type Width Encoding
d opcode C 3 Must be GrantData (5).
d param C 2 Permissions transfer: Cap (toT, toB, toN).
d size C s 2n bytes are being transferred by the slave; copied from

a size.
d source C c The master source identifier receiving this response; copied

from a source.
d sink C m The slave sink identifier issuing this response.
d denied C 1 The slave was unable to service the request.
d corrupt D 1 Indicates whether this data beat is corrupt.
d data D 8w The data payload.

Table 8.11: Fields of GrantData messages on Channel D.
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GrantAck
The GrantAck response message is used by the Master Agent to provide a final acknowledgment
of transaction completion, and is in turn used to ensure global serialization of operations by the
Slave Agent. Table 8.12 shows all the fields of this message on Channel E.

e sink should have been saved from the d sink in the preceding Grant[Data] message, and is
now being re-used to route this response to the correct destination.

Channel E Type Width Encoding
e sink C m The slave sink identifier accepting this response; copied

from d sink.

Table 8.12: Fields of GrantAck messages.
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Release
A Release message is a request message used by a Master Agent to voluntarily downgrade its
permissions on a cached data block. Table 8.13 shows all the fields of Channel C for this message
type.

c opcode must be Release, which is encoded as 6.

c param indicates the specific type of permissions change that the Master Agent is initiating.
Possible transitions are selected from the Shrink or Report category of Table 8.3, which indicates
both what the permissions were and what they are becoming.

c size indicates the total amount of cached data whose permissions are being released, in terms
of log2(bytes). This message itself does not carry data.

c address is used to route the response to the managing Slave Agentfor that address. It must be
aligned to c size.

c source is the ID of the Master Agent that is the source of this request. The ID does not have to
be the same as the ID used to Acquire the block originally, though it must correspond to the same
Master Agent.

c data is ignored and can be assigned any value. c corrupt is reserved and must be set to 0.

Channel C Type Width Encoding
c opcode C 3 Must be Release (5).
c param C 3 Permissions transfer: Shrink or Report (TtoB, TtoN,

BtoN, TtoT, BtoB, NtoN).
c size C s 2n bytes are being downgraded by the master.
c source C c The master source identifier of this request.
c address C a The target address of the Transfer, in bytes.
c corrupt D 1 Reserved; must be 0.
c data D 8w Ignored; can be any value.

Table 8.13: Fields of Release messages on Channel C.
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ReleaseData
A ReleaseData message is a request message used by a Master Agent to voluntarily downgrade
its permissions on a cached data block. and write back dirty data to the managing Slave Agent.
Table 8.14 shows all the fields of Channel C for this message type.

c opcode must be ReleaseData, which is encoded as 7.

c param indicates the specific type of permissions change that the Master Agent is initiating.
Possible transitions are selected from the Shrink or Report category of Table 8.3, which indicates
both what the permissions were and what they are becoming.

c size indicates the total amount of cached data whose permissions are being released, in terms
of log2(bytes), as well as the amount of data contained in this message.

c address is used to route the response to the original requestor. It must be aligned to c size.

c source is the ID of the Master Agent that is the source of this response.

c data contains the dirty data being written back by the operation. c corrupt being HIGH indi-
cates that this beat of data is corrupt.

Channel C Type Width Encoding
c opcode C 3 Must be ReleaseData (6).
c param C 3 Permissions transfer: Shrink or Report (TtoB, TtoN,

BtoN, TtoT, BtoB, NtoN).
c size C s 2n bytes are being written back by the master.
c source C c The master source identifier of this response.
c address C a The target address of the Transfer, in bytes.
c corrupt D 1 Whether this beat of data payload is corrupt.
c data D 8w The data payload.

Table 8.14: Fields of ReleaseData messages on Channel C.
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ReleaseAck
A ReleaseAck message is a response message used by a Slave Agent to acknowledge the receipt
of a Release[Data], and is in turn used to ensure global serialization of operations by the Slave
Agent. Table 8.15 shows the encodings used for fields of Channel D for this message type.

d opcode must be ReleaseAck, which is encoded as 6.

d param is reserved and must be 0.

d size contains the size of the data whose permissions were transferred, though this particular
message contains no data itself. It can be saved from the c size in the preceding Release[Data]
message.

d source should have been saved from the c source in the preceding Release[Data] message
and is now being re-used to route this response to the correct destination. d sink is ignored and
does not need to be unique across the ReleaseAcks that are inflight. See Section 5.4 for details.

d denied is reserved and must be 0.

d data is ignored and can be assigned any value. d corrupt is reserved and must be 0.

Channel D Type Width Encoding
d opcode C 3 Must be ReleaseAck (6).
d param C 2 Reserved; must be 0.
d size C s Bytes transferred; copied from c size.
d source C c The master source identifier receiving this response; copied

from c source.
d sink C m Ignored; can be any value.
d denied C 1 Reserved; must be 0.
d corrupt D 1 Reserved; must be 0.
d data D 8w Ignored; can be any value.

Table 8.15: Fields of ReleaseAck messages on Channel D.
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TL-UL and TL-UH messages on Channel B and Channel C
In addition to the three new operations (Acquire, Probe, Release), TL-C re-specifies all the oper-
ations from TL-UH on Channels B and C. This allows those channels to be used for forwarding
Access and Hint operations to remote owners of cached data. In other words, implementations
may choose to utilize an update-based protocol rather than an invalidation-based one.
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Get
A Get message is a request made by an agent that would like to access a particular block of data
in order to read it. Table 8.16 shows the encodings used for the fields of the B channel for this
message type.

b opcode must be Get, which is encoded as 4. b param is currently reserved for future perfor-
mance hints and must be 0.

b size indicates the total amount of data the requesting agent wishes to read, in terms of
log2(bytes). b size represents the size of the resulting AccessAckData message, not this partic-
ular Get message.

b address must be aligned to b size.

b mask provides the byte select lanes, in this case indicating which bytes to read. See Section 4.6
for details. b size, b address and b mask are required to correspond with one another. Get
messages must have a contiguous mask.

b source is the ID of the Master Agent that is the target of this request. It is used to route the
request. See Chapter 5.4 for details.

b data is ignored and may take any value. b corrupt is reserved and must be 0.

Channel B Type Width Encoding
b opcode C 3 Must be Get (4).
b param C 3 Reserved; must be 0.
b size C s 2n bytes will be read by the master and returned.
b source C c The master source identifier being targeted by this request.
b address C a The target address of the Access, in bytes.
b mask D w Byte lanes to be read from.
b corrupt D 1 Reserved; must be 0.
b data D 8w Ignored; can be any value.

Table 8.16: Fields of Get messages on Channel B.
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PutFullData
A PutFullData message is a request by an agent that would like to access a particular block of
data in order to write it. Table 8.17 shows the encodings used for the fields of the Channel B for
this message type.

b opcode must be PutFullData, which is encoded as 0. b param is currently reserved for future
performance hints and must be 0.

b size indicates the total amount of data the requesting agent wishes to write, in terms of
log2(bytes). In this case, b size represents the size of this request message.

b address must be aligned to b size. The entire contents of b address to
b address+2**b size-1 will be written.

b mask provides the byte select lanes, in this case indicating which bytes to write. See Section 4.6
for details. One bit of b mask corresponds to one byte of data written. b size, b address and
* mask are required to correspond with one another. PutFullData must have a contiguous mask,
and if b size is greater than or equal the width of the physical data bus then all b mask must be
HIGH.

b source is the ID of the Master Agent that is the target of this request. It is used to route the
request.

b data is the actual data payload to be written. b corrupt being HIGH indicates the data in this
beat is corrupt.

Channel B Type Width Encoding
b opcode C 3 Must be PutFull (0).
b param C 3 Reserved; must be 0.
b size C s 2n bytes will be written by the master.
b source C c The master source identifier being targeted by this request.
b address C a The target address of the Access, in bytes.
b mask D w Byte lanes to be written, must be contiguous.
b corrupt D 1 Whether this beat of data is corrupt.
b data D 8w Data payload to be written.

Table 8.17: Fields of PutFullData messages on Channel B.
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PutPartialData
A PutPartialData message is a request by an agent that would like to access a particular block
of data in order to write it. PutPartialData can be used to write arbitrary-aligned data at a byte
granularity. Table 8.18 shows the encodings used for the fields of the Channel B for this message
type.

b opcode must be PutPartialData, which is encoded as 1. b param is currently reserved for
future performance hints and must be 0.

b size indicates the range of data the requesting agent will posibly write, in terms of log2(bytes).
b size also represents the size of this request message’s data.

b address must be aligned to b size. Some subset of the contents of b address to
b address+2**b size-1 will be written.

b mask provides the byte select lanes, in this case indicating which bytes to write. See Section 4.6
for details. One bit of b mask corresponds to one byte of data written. b size, b address and
b mask are required to correspond with one another, but PutPartialData may write less data
than b size, depending on the contents of b mask. Any set bits of b mask must be contained
within an aligned region of b size.

b source is the ID of the master interface that is the target of this request. It is used to route the
request.

b data is the actual data payload to be written. b data in a byte that is unmasked is ignored and
can take any value. b corrupt being HIGH indicates that masked data in this beat is corrupt.

Channel B Type Width Encoding
b opcode C 3 Must be PutFull (1).
b param C 3 Reserved; must be 0.
b size C s Up to 2n bytes will be written by the master.
b source C c The master source identifier being targeted by this request.
b address C a The target base address of the Access, in bytes.
b mask D w Byte lanes to be written.
b corrupt D 1 Whether this beat of data is corrupt.
b data D 8w Data payload to be written.

Table 8.18: Fields of PutPartialData messages on Channel B.
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AccessAck
AccessAck provides an dataless acknowledgement to the original requesting agent. Table 8.19
shows the encodings used for fields of the Channel C for this message type.

c opcode must be AccessAck, which is encoded as 0. c param is reserved for use with TL-C
opcodes and should be assigned 0.

c size contains the size of the data that was accessed, though this particular message contains
no data itself. The size and address fields must be aligned. c address must match the b address
from the request that triggered this response. It is used to route this response back to the Tip.

c source is the ID the of the agent issuing this response message. See Chapter 5.4 for details.

c data is ignored and can be assigned any value. c corrupt is reserved and must be 0.

Channel C Type Width Encoding
c opcode C 3 Must be AccessAck (0).
c param C 3 Reserved; must be 0.
c size C s 2n bytes were accessed by the master.
c source C c The master source identifier issuing this response.
c address C a The target address of the operation, in bytes.
c corrupt D 1 Reserved; must be 0.
c data D 8w Ignored; can be any value.

Table 8.19: Fields of AccessAck messages on Channel C.
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AccessAckData
AccessAckData provides an acknowledgement with data to the original requesting agent. Ta-
ble 8.20 shows the encodings used for fields of the Channel C for this message type.

c opcode must be AccessAckData, which is encoded as 1. c param is reserved for use with
TL-C opcodes and should be assigned 0.

c size contains the size of the data that was accessed, which corresponds to the size of the data
assosciated with this particular message. The size and address fields must be aligned.

c address must match the b address from the request that triggered this response. It is used to
route this response back to the Tip.

c source is the ID the of the agent issuing this response message. See Chapter 5.4 for details.

c data contains the data accessed by the operation. Data can be changed between beats of a
AccessAckData that is a burst. c corrupt being HIGH indicates that this beat of data is corrupt.

Channel C Type Width Encoding
c opcode C 3 Must be AccessAckData (1).
c param C 3 Reserved; must be 0.
c size C s 2n bytes were accessed by the master.
c source C c The master source identifier issuing this response.
c address C a The target address of the Access, in bytes.
c corrupt D 1 Indicates whether this beat of data is corrupt.
c data D 8w The data payload for messages with data.

Table 8.20: Fields of AccessAckData messages on Channel C.
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ArithmeticData
A ArithmeticData message is a request made by an agent that would like to access a particular
block of data in order to read-modify-write it with an arithmetic operation. Table 8.21 shows the
encodings used for the fields of the Channel B channel for this message type.

b opcode must be ArithmeticData, which is encoded as 2.

b param specifies the specific atomic operation to perform. The set of supported arithmetic oper-
ations is listed in Table 7.3. It consists of { MIN, MAX, MINU, MAXU, ADD }, representing signed and
unsigned integer maximum and minimum, as well as integer addition.

b size is the arithmetic operand size and reflects both the size of this request’s data as well as
the AccessAckData response.

b address must be aligned to b size.

b mask provides the byte select lanes, in this case indicating which bytes to read-modify-write.
See Section 4.6 for details. One bit of b mask corresponds to one byte of data used in the atomic
operation. b size, b address and b mask are required to correspond with one another (i.e., the
mask is also naturally aligned and fully set HIGH contiguously within that alignment).

b source is the ID of the master interface that is the target of this request. It is used to route the
request.

b data contains one of the operands (the other is found at the target address). b data in a byte
that is unmasked is ignored and can take any value. b corrupt being HIGH indicates that masked
data in this beat is corrupt.

Channel B Type Width Encoding
b opcode C 3 Must be ArithmeticData (3).
b param C 3 See Table 7.3.
b size C s 2n bytes will be read and written by the master.
b source C c The master source identifier being targeted by this request.
b address C a The target address of the Access, in bytes.
b mask D w Byte lanes to be read and written.
b corrupt D 1 Whether this beat of data is corrupt.
b data D 8w Data payload to be used as operand.

Table 8.21: Fields of ArithmeticData messages on Channel B.
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LogicalData
A LogicalData message is a request made by an agent that would like to access a particular
block of data in order to read-modify-write it with an logical operation. Table 8.22 shows the
encodings used for the fields of the Channel B channel for this message type.

b opcode must be LogicalData, which is encoded as 2.

b param specifies the specific atomic operation to perform. The set of supported logical operations
is listed in Table 7.5. It consists of { XOR, OR, AND, SWAP }, representing bitwise logical xor, or, and,
as well as a simple swap of the operands.

b size is the operand size and reflects both the size of the this request’s data as well as the
AccessAckData response.

b address must be aligned to b size. See Section 4.6 for details.

b mask provides the byte select lanes, in this case indicating which bytes to read-modify-write.
See Section 4.6 for details. One bit of b mask corresponds to one byte of data used in the atomic
operation. b size, b address and b mask are required to correspond with one another (i.e., the
mask is also naturally aligned and fully set HIGH contiguously within that alignment).

b source is the ID of the master interface that is the target of this request. It is used to route the
request.

b data contains one of the operands (the other is found at the target address). b data in a byte
that is unmasked is ignored and can take any value. b corrupt being HIGH indicates that masked
data in this beat is corrupt.

Channel B Type Width Encoding
b opcode C 3 Must be LogicalData (3).
b param C 3 See Table 7.5.
b size C s 2n bytes will be read and written by the master.
b source C c The slave source identifier being targeted by this request.
b address C a The target address of the Access, in bytes.
b mask D w Byte lanes to be read and written.
b corrupt D 1 Whether this beat of data is corrupt.
b data D 8w Data payload to be written.

Table 8.22: Fields of LogicalData messages on Channel B.
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Intent
A Intent message is a request made by an agent that would like to signal its future intention
to access a particular block of data. Table 8.23 shows the encodings used for the fields of the
Channel B channel for this message type.

b opcode must be Intent, which is encoded as 5.

b param specifies the specific intention being conveyed by this Hint operation. Note that its in-
tended effect applies to the slave interface and further out in the hierarchy. The set of supported
intentions is listed in Table 7.7. It consists of { PrefetchRead, PrefetchWrite }, representing
prefetch-data-with-intent-to-read and prefetch-data-with-intent-to-write.

b size is the size of data to which the attention applies. b address must be aligned to b size.
b mask provides the byte select lanes, in this case indicating the bytes to which the intention
applies. See Section 4.6 for details. b size, b address and b mask are required to correspond
with one another.

b source is the ID of the master interface that is the target of this request. It is used to route the
request.

b data is ignored and can take any value. b corrupt is reserved and must be 0.

Channel B Type Width Encoding
b opcode C 3 Must be Intent (5).
b param C 3 Intention encoding; See Table 7.7.
b size C s 2n bytes to which this intention applies.
b source C c The master source identifier being targeted by this request.
b address C a The address of the targeted cached block, in bytes.
b mask D w Byte lanes to which the Hint applies.
b corrupt D 1 Reserved; must be 0.
b data D 8w Ignored; can be any value.

Table 8.23: Fields of Intent messages on Channel B.
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HintAck
HintAck serves as an acknowledgement response for a Hint operation. Table 8.24 shows the
encodings used for fields of Channel C for this message type.

c opcode must be HintAck, which is encoded as 2. c param is reserved must be assigned 0.

c size contains the size of the data that was hinted about, though this particular message con-
tains no data itself. c address is only required to be aligned to c size.

c source is the ID the of the agent issuing this response message, whereas c source should
have been saved from the request and is now being re-used to route this response to the correct
destination. See Chapter 5.4 for details.

c data is ignored and can be assigned any value. c corrupt is reserved and must be 0.

Channel C Type Width Encoding
c opcode C 3 Must be HintAck (2).
c param C 3 Reserved; must be 0.
c size C s 2n bytes were hinted about.
c address C a The target address of the operation, in bytes.
c source C c The master source identifier issuing this response.
c corrupt D 1 Reserved; must be 0.
c data D 8w Ignored; can be any value.

Table 8.24: Fields of HintAck messages on Channel C.



Glossary

Access An operation that reads and/or writes the data at a specified address. 33, 34

acknowledgement message a message the other agent is required to send back if you send a
request. 4, 50, 51, 53, 62

Acquire A Transfer operation whereby the master acquires permissions to cache a copy of the
block from the slave. 33, 35, 36

agent An active participant in the protocol that sends and receives messages in order to complete
operations. 3, 4

Atomic An Access operation allowing the master to read-modify-write addresses managed by the
slave. 27, 33, 35, 36, 43, 53, 54, 63

beat A single-clock-cycle slice of any message that takes multiple cycles to transmit over a chan-
nel of a particular width. 17, 20, 24–27, 63

burst A multi-beat message. iv, 17, 18, 24, 26, 31, 43, 53, 63

channel A one-way communication link between a master interface and a slave interface carrying
messages of homogeneous priority. 3, 6, 9

Channel A Transmits a request that an operation be performed at a specified address, accessing
or caching the data. iii, 6, 12, 15, 19, 25, 26, 47–49, 58, 60, 61, 78–80, 85, 86

Channel B Transmits a request that an operation be performed at a specified master, accessing
or un-caching the data. iii, v, 6, 13, 14, 39, 81, 82, 91–94, 97–99

Channel C Transmits a data or permissions acknowledgment for a Channel B request. iii, v, 6,
14, 15, 39, 83, 84, 88, 89, 91, 95, 96, 100

Channel D Transmits a data or permissions acknowledgement to the original requestor. iii, 6, 15,
16, 24–26, 39, 40, 50, 51, 62, 78, 85, 86, 90

Channel E Transmits a final acknowledgment of a cache block transfer from the requestor, used
for serialization. iii, 6, 16, 85–87

DAG Directed Acyclic Graph. 4–6, 20, 23

deadlock . 6, 25
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follow-up message any message sent as a result of receiving some other message. 20

forwarded message a recursive message that is at the same level of priority as the message that
initiated it. 20

Get An Access operation allowing the master to read addresses managed by the slave. 2, 33–36,
43–45, 53, 54, 63

Hint An operation that is informational only and has no direct effect on data values. 33, 34, 53,
61, 62, 99, 100

Intent A Hint operation that indicates the master intends to read or write data at addresses man-
aged by the slave. 33, 35, 36, 54

link The set of channels required to complete operations between two agents. 3, 4, 6, 11

master interface Through which agents may request that memory operations be performed, or
for permission to cache copies of data. 4, 5, 11, 17, 24–26, 33, 94, 97–99

message A set of control and data values sent over a particular channel. iv, v, 3, 17, 33–36, 43,
54, 63, 91

MOESI A cache coherence policy featuring an ownership state. 1

operation A change to an address range’s data values, permissions or location in the memory
hierarchy. iv, 3, 20, 33, 34

Probe A Transfer operation whereby the slave revokes permissions to cache a copy of the block
from the master. 35, 36

Put An Access operation allowing the master to write addresses managed by the slave. 2, 33–36,
43–45, 53, 54, 63

receiver The interface that accepts messages on a channel (raises ready). 17

recursive message optional messages sent as a means of implementing an operation. 20, 21,
23

Release A Transfer operation whereby the master voluntarily releases permissions on the block
back to the slave. 33, 35, 36

request message a message specifying an access to perform or a change of permissions on a
cached block. 4, 9, 20, 21, 24–27, 43

response message a message the other agent is required to send back if you send a request.
9, 20, 24–27, 39, 43, 47, 54

sender The interface that originates messages on a channel (raises valid). 17
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slave interface Through which agents may grant permissions and access to a range of ad-
dresses, and respond with completed memory operations. 4, 5, 11, 17, 24, 61, 99

SoC System-on-Chip. 1

TL-C TileLink Cached. 2, 6, 9, 13, 14, 16, 33, 50, 51, 65, 95, 96

TL-UH TileLink Uncached Heavyweight. 2, 33, 53, 54

TL-UL TileLink Uncached Lightweight. 2, 24, 33, 43, 44, 47–51, 53, 54

Transfer An operation that moves permissions or cached copies of data through the network.. 33
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